SIDIS@Detector WG

Ralf Seidl (RIKEN), Justin Stevens (William&Mary), Alexey Vladimirov (Regensburg), Anselm Vossen (Duke), Bowen Xiao (Central Normal University)

Summary of Physics program and basic kinematic region

- See SIDIS presentation by Ralf at today's conveners meeting for detailed kinematic maps (also in backup here)
- Exemplary Processes:
 - Single and di-hadron SIDIS for (TMD) PDFs, (n)FFs
 - Wide range in x, large Q2 reach to study evolution. Overlap with fixed target desired. Low and high z for FF measurements
 - Gluon Sivers and Gluon Saturation
 - Low Q2 (but large Q2 range desirable to study evolution) low x for gluon saturation, high x for Sivers
 - Spectroscopy
 - Low Q2 photoproduction
 - Lambda Production
 - For spin transfer similar x ranges as other spin measurements

Basic Detector Measurements

- Single and di-hadron SIDIS for (TMD) PDFs, (n)FFs
 - Scattered electron and hadrons over wide eta range to cover wide x, Q2 region (as was input to original detector design)
 - PID at high momenta (high z at high CME) might be limiting, p_T cutoff for low z
 - Hadron acceptance for CC events
- Gluon Sivers and Gluon Saturation
 - Track pT, eta and scattered electron, need high resolution for p imbalance measurements from 1-40 GeV and 2pi coverage. $\frac{\delta p}{p} \approx 2\%$ should be good enough
- Spectroscopy
 - Tracking resolution in the forward direction could be a limiting factor for mass resolution
- Lambda Production
 - Tracking resolution, displaced vertex and soft photon detection. Low p_T acceptance (not higher than 300 MeV)

For charged particles, how important is low p_{T} acceptance versus high p_{T} resolution

- Competing requirements \rightarrow run at different field strengths?
- Single and di-hadron SIDIS for (TMD) PDFs, (n)FFs
 - Need low p_T acceptance for low z $\,$ and di-hadron partial waves and high p_T resolution for high z
- Gluon Sivers and Gluon Saturation
 - For back-to-back hadrons/dijets p_T resolution more important
- Spectroscopy
 - High p_T resolution (in particular forward) needed for mass resolution
- Lambda Production
 - p_{T} acceptance critical. High p_{T} resolution needed for mass resolution to constrain feed-down

Importance of luminosity? Will you be systematic or statistics-limited? Which systematic sources are the most important?

- Single and di-hadron SIDIS for (TMD) PDFs, (n)FFs
 - Some differential channels will be statistics limited
- Gluon Sivers and Gluon Saturation
 - High luminosity required, in particular for unknown gluon Sivers
- Spectroscopy
 - Statistically limited
- Lambda Production
 - For given detector configuration statistically limited (systematics from feeddown will also go with lumi)

How important is polarisation to your physics program?

- Mainly hadron polarization needed, enters linearly
- Helicity measurements need electron polarization as well
 →overlapping reqs with DIS group

What beam energies are ideal for your physics aims (quantify if possible)?"

- Single and di-hadron SIDIS for (TMD) PDFs, (n)FFs
 - Probably wide range of energies to cover kinematic phase space
- Gluon Sivers and Gluon Saturation
 - Gluon saturation needs highes possible energies (at least 18*110 GeV for eA)
- Spectroscopy
 - Lower energies due to acceptance limitations at higher beam energies
- Lambda Production
 - Most studies currently with 10x100
 - Beam energy has little impact on soft pion
 - High beam energies push lambda more forward where tracking resolution is worse
 - \rightarrow intermediate energies with high lumi

How important is the Interaction Region design for your physics observable and do you have criteria that might impact the design?

- Single and di-hadron SIDIS for (TMD) PDFs, (n)FFs
 - Current handbook outline seem adequate
- Gluon Sivers and Gluon Saturation
 - Current design (|eta| <4.5) is ok. For the collisional energy 18*275 GeV, the forward acceptance will impact the high x region.
- Spectroscopy
 - Reduced forward acceptance would be a show stopper for the exclusive spectroscopy measurements, but this will probably be elaborated by the exclusive WG
- Lambda Production
 - Preferable to choose CME such that Lambdas products are central, then IR design not too critical

Backup

Single hadron SIDIS for quark TMDs, helicities, (n)FFs, etc

Single hadron SIDIS for quark TMDs, helicities, (n)FFs, etc

Polar angle in steps of 5 degrees

Di-hadrons for Tensor charge/BM/Higher Twist

Chris Dilks, et. al

Di-hadrons for Tensor charge/BM/Higher Twist

Liang Zheng, et. al

Di-hadrons(jets, HF) for low-x and gluon Sivers

n	Nomenclature		Tracking		Electrons	π/К/р		HCAL	Muons
"	Nomenciature	Nomenciature		Allowed X/X ₀ Si-Vertex	Resolution σ_E/E PID	p-Range (GeV/c)	Separation	Resolution σ_{E}/E	Muons
-6.9 to -5.8		<u>low-Q2 tagger</u>	<u>σθ/θ < 1.5%; 10-6</u> < Q2 < 10-2 GeV2	5					
 -4.5 to -4.0	Auxiliary Detectors	Instrumentation to separate							
-4.0 to -3.5		<u>charged particles</u> <u>from photons</u>			<u>2%/VE</u>				
-3.5 to -3.0 -3.0 to -2.5			<u>o₀/p ~</u> 0.1%⊕0.5%						
-2.5 to -2.0		Backward	σ _p /p						
-2.0 to -1.5 -1.5 to -1.0		<u>Detector</u>	Gen 0.05	erally sim	nilar to singl	e hadro	n mea	asureme	ents:
-1.0 to -0.5 -0.5 to 0.0	Central Detector	Barrel	_{هيله} gluc	on Sivers:	forwa	rd regio	n (hig	gher x)	
0.0 to 0.5 0.5 to 1.0	Barrer		Satu	iration:	central/bacl	kward re	gion	(low x)	
1.0 to 1.5 1.5 to 2.0 2.0 to 2.5		Forward Detectors	<u>o_p/p</u> <u>~0.0</u> ● ►	ligh track	ing resoluti	on need	led at	higher	
2.5 to 3.0 3.0 to 3.5			<u>o_p/p</u> 0.1%	nomenta	Ŭ			Ŭ	
3.5 to 4.0		Instrumentation to separate	• f	ull azimu	thal coverage	e for az	imutk	าลไ	
4.0 to 4.5		<u>charged particles</u> from photons					muu	iai	
	Auxiliary Detectors	Neutron Detection	σ _{intri}	orrelatio	n needed				
> 6.2		<u>Proton</u> <u>Spectrometer</u>	$\frac{1\%; \text{Acceptance:}}{0.2 < p_t < 1.2}$ GeV/c						

Gluon Sivers measurement requirement from charged dihadron channel

ep 18x275 GeV 0.01<y<0.95, 1<Q²<2 GeV² charged hadron, $|\eta|$ <4.5, p_T*>1.4 GeV, z_h>0.1, k*_T/P*_T<0.7, * indicates γ *p c.m.s frame

 $p \lor \eta$ for scattered electron and charged hadron pairs

p_T vs $\Delta \phi$ for associate hadron relative to leading

Liang Zheng, et. al

Gluon Saturation from charged dihadron channel

ep 18x110 GeV 0.6 < y < 0.8, $1 < Q^2 < 2 \text{ GeV}^2$ charged hadron, $|\eta| < 4.5$, $p_{T trig}^* > 2 \text{ GeV}$, $p_{T assc}^* > 1 \text{ GeV}$, $0.2 < z_h < 0.4$, * indicates $\gamma^* p$ c.m.s frame

 $p \text{ vs } \eta$ for scattered electron and charged hadron pairs

 $p_T vs \Delta \phi$ for associate hadron relative to leading hadron

Liang Zheng, et. al

Lambda measurements

Momentum vs theta

Jinlong Zhang, et. al

Final p_T limits

-18x275 10 - 10x100 -5x100 -5x41 10² 10 0 2 3 -1 4 p_(GeV) pt of proton Entries 6167 Mean RMS 0.6228 0.4549 10² 77.30% 4.48% 10 0 1 2 p_(GeV)

pt of proton

- p_T of pion and proton > 0.3 GeV
- Red is independent 0.3 GeV cut
- Blue filled is combined eta and pT cut 6

Lambda mass vs eta

0

 $\Lambda\!/\overline{\Lambda}$ mass vs η

0

 $\Lambda/\overline{\Lambda}$ mass vs η

Entries

Mean

RMS

0.05

0.05

21

20

Smearing photon E for Sigma0

- In addition to the tracking smearing (handbook)
- Handbook setup push mass to larger side
- Lambda and sigma peak start merging at 3%/√E

Spectroscopy measurements: $ep \rightarrow Zc+n, Zc+ \rightarrow J/\psi\pi+$

Justin Stevens, et. al

η	Nomenclature		Tracking Resolution	Allowed X/X ₀ Si-Vertex	Electrons Resolution σ _E /E	PID	π/K/p p-Range (GeV/c)	Separation	HCAL Resolution σ _E /E	Muons
-6.9 to -5.8		low-Q2 tagger	<u>σθ/θ < 1.5%; 10-6</u> < Q2 < 10-2 GeV2							
 -4.5 to -4.0	Auxiliary Detectors	Instrumentation								
-4.0 to -3.5		charged particles from photons			<u>2%/√E</u>					
-3.5 to -3.0 -3.0 to -2.5		Backward	<u>σ_p/p∼</u> 0.1%⊕0.5%							
-2.5 to -2.0		Detector	<u>σ_p/p 0.1%⊕0.5%</u> σ_/p	TBD	<u>2%/√E</u> 7%/√E	<u>π</u>	<u>≤ 7 GeV/c</u>		<u>~50%/vE</u>	
-2.0 to -1.3 -1.5 to -1.0			<u>o_p/p</u> 0.05%⊕0.5%		<u>7%/VE</u>	suppress on up to	<u>i</u>			
-1.0 to -0.5			- /-	$\sigma_{xyz} \sim 20 \ \mu m$		<u>1:10⁴</u>				
0.0 to 0.5	Central Detector	<u>Barrel</u>	o <u>p</u> /p ~0.05%×p+0.5%	$\frac{20/p_{T}GeV \mu m}{20/p_{T}GeV \mu m}$			<u>≤ 5 GeV/c</u>	<u>≥3σ</u>		<u>TBD</u>
0.5 to 1.0				<u>5 μm</u>						
1.0 to 1.5 1.5 to 2.0			<u>σ_p/p</u>				<u>≤ 8 GeV/c</u>			
2.0 to 2.5		Forward Detectors	<u>~0.05%×p+1.0%</u>	TBD	<u>(10-12)%/√E</u>				<u>~50%/ve</u>	
2.5 to 3.0 3.0 to 3.5			<u>σ_p/p ~</u> 0.1%×p+2.0%	Even more forw	ard than S	SIDIS o	channels, re	quires hi	gher momen	ita
3.5 to 4.0		Instrumentation	_							
4.0 to 4.5		to separate charged particles from photons		+ forward neutr	on taggin	g				
	Auxiliary	Neutron Detection	1							
> 6.2		<u>Proton</u> <u>Spectrometer</u>	$\frac{\sigma_{intrinsic}(t)/ t <}{1\%; Acceptance:}$ $\frac{0.2 < p_t < 1.2}{GeV/c}$							

Overall status

- All channels are progressing well, all have produced some simulation data (mostly pythiaerhic+eicsmear, some dedicated generators and Pythia8)
- Application of latest smearing package (from Kolja's mail) ongoing
- Some pseudo-data already with theorists for impact studies
- Requests for Pavia meeting: Maybe again joint SIDIS/HFjets session.

Golden channels I

Measurement/process	Main detector requirements	Anticipated plot	Comments
Quark Sivers, 3D momentum structure, TMD evolution from single hadrons \rightarrow 3D image (x, k T) of the Sivers Function, Evolution test of Sivers at intermediate x , Tensor charge via Collins Alexey Vladimirov	• η acceptance for hadrons • angular resolution • granularity of the detector (central to forward -1 to 4), • pi/K/p identification • Comments: PID \leftrightarrow Tracking, B -field, Δ p/p, min p	 pseudo-3D Sivers function as a function kt for various x bins, Value of Tensor charge uncertainties + plot vs x, Q2 dependence of Sivers function or A\$%at fixed x 	 Use of existing simulations at Elke's group + smearing + weights originating from theorists, weights for Sivers asymmetries prepared Work on common database ongoing, integrate in SW environment Theory work on fits/parameterizations. First tests for unpol TMD data
Gluon Sivers via di- jets/dihadrons →Probing the size of the gluon Sivers function Bowen Xiao	acceptance for back-to- back Dihadrons	Size of the asymmetry as a function of <i>x</i>	 Continuation of study based on arXiv:1805.05290 together with current EIC detector design consideration of different jet algorithms Elke, Zheng, Lee and Yin Possible different parametrizations of gluon Sivers function inputs from Pavia

Golden channels II

Measurement/process	Main detector requirements	Anticipated plot	Comments
Spectroscopy possibilities → Representative spectroscopy channel : X,Y → J/Ψππ, DD* Justin Stevens	 dilepton identification for J/psi displaced vertex pi/K separation for open charm forward proton/neutron recoils from diffractive production (similar to DVCS reqs) 	Kinematic coverage for decay particles in representative channels Possibly expected limits on coupling vs mass for J/Ψππ, DD* final states	Generator, EICsmear for mass resolution etc., bkgd. estimation

Silver channels I

Measurement/process	Main detector requirements	Anticipated plot	Comments
Sea quark helicity measurements →flavor separated (anti)quark helicity distributions over wide range of x Ralf Seidl	hadron momentum and energy resolution in forward direction (2 < η < 4) for CC events	Update of previous sea quark helicity PDF uncertainty plots	 Work will follow ongoing sensitivity studies by Elke's group + Argentinian global fitters. Implementation of detector smearing, etc needs to be added to existing studies. Concentration on CC and <i>D</i>/3<i>He</i>.
FFs/nFFs/nPDFs via single hadron FF →Single hadron fragmentation functions for ep and eA for FFs, nFFs, nPDFs Ralf Seidl	See TMD SIDIS reqs	nPDF uncertainty expectation, (n)FF Expectation	 Simulations prepared using official 4 ep and 3 eAu beam energy combinations, for smeared simulation BeAST resolutions were used in eicsmear. reweighted eAu multiplicitis using nFFs from SSZ fit Not implemented: magnetic field and PID (hadron, momentum, rapidity) impact.

Silver+New channels

Measurement/process	Main detector requirements	Anticipated plot	Comments
Di-hadron correlations in eA →low x →Probing the onset of saturation phenomenon Bowen Xiao	backward hadron acceptance, granularity	decorrelation plot as in white paper	Continuation of work based on arXiv:1403.2413 with extension to jets with different algorithms using the new collisional energies at eRHIC.
Di-hadron FF for Tensor charge/Boer-Mulders Anselm Vossen	Single hadron reqs+min <i>z</i> for partial wave expansion	 Impact on tensor charge/transversity extraction Projected BM asymmetries 	Initial simulations prepared for kin. Ranges, Reweighting of asymmetries next
Lambda related spin measurements →L/T spin transfer, polarizing FFs (universality), jet structure Anselm Vossen	 ∧ acceptance Slow pion → low momentum cutoff, displaced vertex 	 Precision of A polarization measurements 	Detailed study of acceptances and momentum requirements