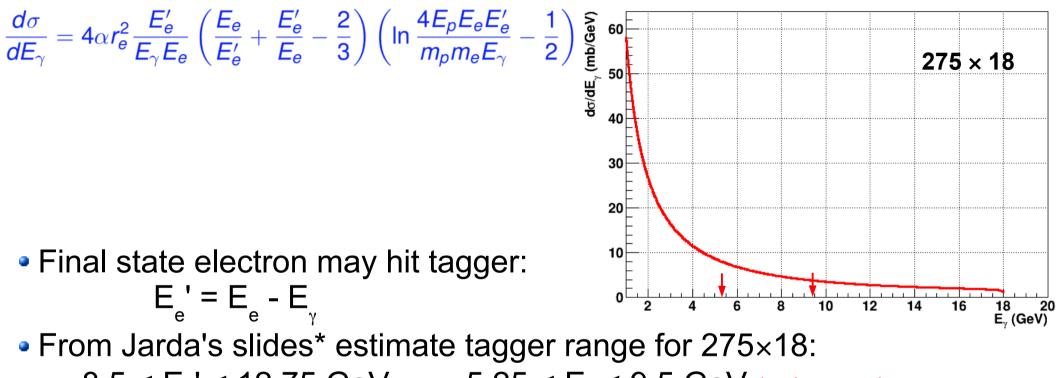

Occupancy in low-Q² tagger

W. Schmidke Far Fwd. Det. Mtg. 27.04.20

- Jarda has outlined a low-Q² tagger:
- Discussed possibilities: tagging/measuring electrons from very low-Q² DIS (photoproduction)
- These processes will compete with the high cross section bremsstrahlung process (used for LUMI measurement)

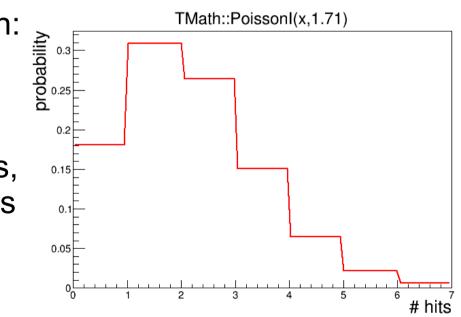

Here:

- Check per bunch occupancy of tagger (it's high)
- Mitigation for possible physics use \Rightarrow tagger design
- Reminder: tagger for LUMI measurement cross check / calibration

Bethe-Heitler

High cross section Bethe-Heitler bremsstrahlung ep→epγ
Photons used for LUMI measurement (pair spectrometer)

 $8.5 < E_{e} < 12.75 \text{ GeV} \implies 5.25 < E_{e} < 9.5 \text{ GeV}$ (red arrows)

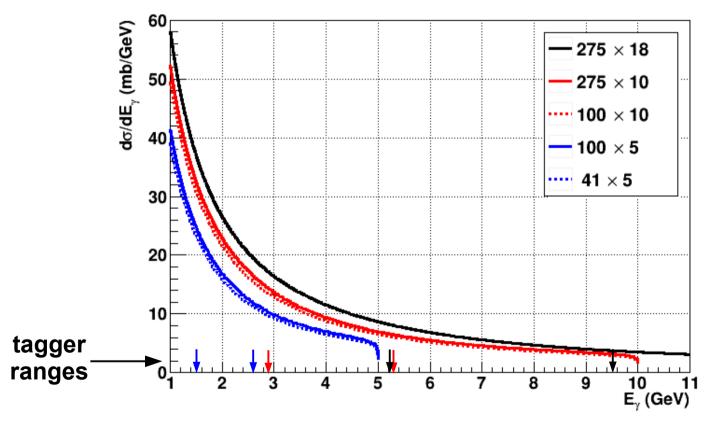

• Integrate B-H formula over this range: tagger cross section σ (tagger) = 23.1 mb

• Rather large cross section; how often tagger hit? \u2212

*sl.7 https://indico.bnl.gov/event/8288/contributions/36673/attachments/27602/42258/JA-Low_Q2_tagger_20200413.pdf These slides extra slide 9

Luminosity, hits / bunch xing

- Handy conversion for cross sections: $1 \text{ mb} = 10^{-27} \text{ cm}^2$
- EIC 275×18 high divergence configuration:
 - $-L = 1.65 \times 10^{33} \text{ cm}^{-2} \text{ sec}^{-1} = 1.65 \times 10^{6} \text{ mb}^{-1} \text{ sec}^{-1}$
 - 290 bunches, bunch spacing $T_{_h} \approx 13 \ \mu sec/290 = 44.8 \times 10^{-9} sec$
- L = 0.074 mb⁻¹ / bunch ×ing
- Tagger hits / bunch ×ing = $L \cdot \sigma$ (tagger) = 1.71
- This is mean (λ) of a Poisson distribution:
- Only 18% (e^{-λ}) of bunch ×ings have no tagger hit from B-H brems.
- 82% (1-e⁻) have one or more tagger hits, ~50% multiple hits
- These will overlap with any other photoproduction / low-Q² DIS we want to measure with the tagger

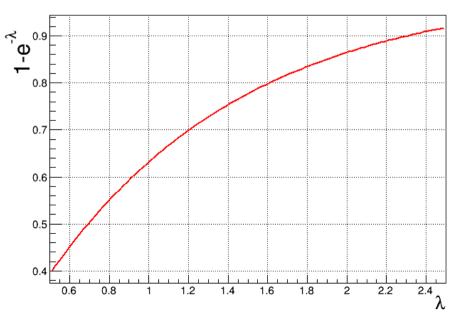


Other EIC energies

• Tagger E_e' range defined by dipole in e-ring $\Rightarrow E_e'$, E_γ ranges scale with beam $E_e^{:}$:

$E_e \ (\text{GeV})$	18	10	5
min. E_{γ} (GeV)	5.25	2.9	1.5
max. E_{γ} (GeV)	9.5	5.3	2.6

• B-H spectra all EIC energies:


Similar integral over tagger range all energies: 17-23 mb

Other EIC energies

• From EIC tables for high divergence (acceptance) configurations:

$E_p \times E_e \; (\text{GeV} \times \text{GeV})$	275×18	275×10	100×10	100×5	41×5
L $(10^{33} \text{ cm}^{-2} \text{ sec}^{-1})$					
$= (10^6 \text{ mb}^{-1} \text{ sec}^{-1})$	1.65(0.83)	10.05 (6.4)	4.35(4.07)	3.16	0.44
# bunches	290	1160	1160	1160	1160
$T_b(10^{-9} \text{ sec})$	44.8	11.2	11.2	11.2	11.2
$L (mb^{-1}/bunch)$	0.074(0.037)	0.112(0.072)	0.049(0.046)	0.035	0.005
σ (tagger) (mb)	23.1	22.8	21.4	18.6	17.5
tagger hits / bunch	$1.71 \ (0.85)$	2.55(1.62)	1.05 (0.98)	0.65	0.088

- The bottom line (except for lowest \sqrt{s} configuration): always have mean λ = 0.65-2.5 B-H brems. hits in tagger / bunch ×ing
- 50-90% of bunch ×ings have one or more B-H brems. hits in tagger:
- Complications for physics analyses

5

Mitigation

<u>HERA</u>: tagged photoproduction, vetoed γ in zero-degree calorim.

- possible @ lower HERA luminosities
- not possible @ EIC; many more B-H brems. γ 's, veto everything

Segmented tagger:

- Segment tagger, e.g. like lumi calorims.: 7×7 3 cm PbWO4
- Could distinguish a few e' hits, measure energies E'
- Central detector:
 - consider (E-P₂) = $\sum_{i} E_{i} P_{2i}$ sum i over all track/calorim. objects

2500

- objects 'leaking' down forward (hadron) beam pipe E-P ≥ 0
- initial state (beams): (E-P_) = 2E_ 7500 ZEUS@HERA Event 5000 2E = 55 Ge
- fully contained DIS: (E-P_) ≈ 2E_ ·
- e' down rear beam pipe: E' = E (E-P)/2
- compare/match E ' from tagger, central detector
- Challenging when 3,4,5... hits in tagger

Unpopular: special running w/ low per-bunch luminosity 💊

55

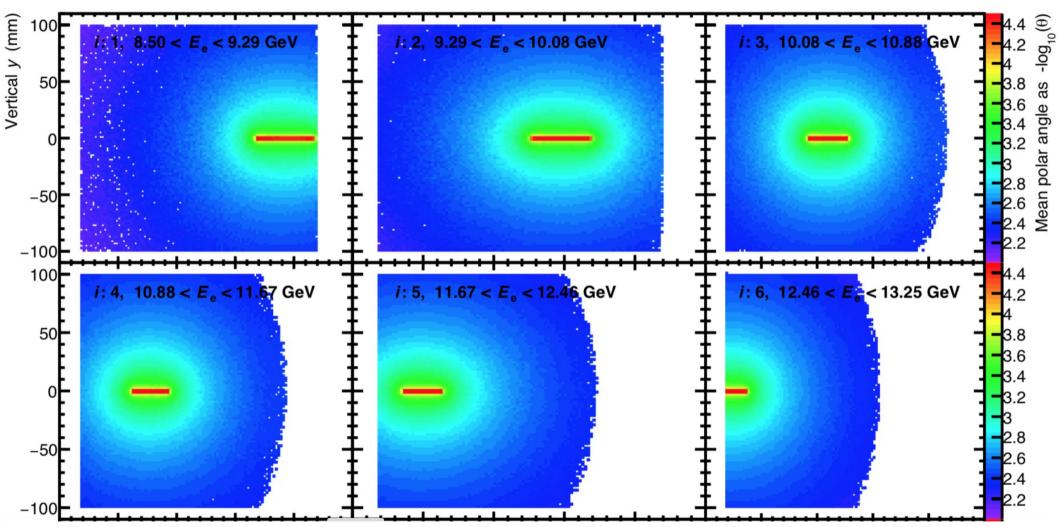
E-P, (GeV)

50

LUMI spectrometer acceptance

Important reminder:

- The tagger also has an equally important purpose: measurement / ×check lumi spectrometer acceptance
- From $ep \rightarrow ep\gamma$: e in tagger \Rightarrow look for γ in spectrometer
 - check / verify simulation of spectrometer; estimate systematics
 - e.g. measure exit window conversion probability
- Need special (short) low lumi / bunch ×ing runs
 - ensure only one γ in system per bunch $\times ing$
 - high cross section physics measurements could use these runs


Sad historical note:

- We never completed this analysis on ZEUS (due to circumstances...)
- Final systematic on LUMI: 1.7%
- Could have achieved ~1% with tagger measurement
- Must do this for EIC!

Extra

• From slide 7 Jarda's last presentation*:

Red region shows electrons scattered ~ zero degrees: bremsstrahlung

*https://indico.bnl.gov/event/8288/contributions/36673/attachments/27602/42258/JA-Low_Q2_tagger_20200413.pdf 9