Update on reconstruction in low-Q² tagger with beam effects

Jaroslav Adam

BNL

April 27, 2020

Far-Forward Detectors Meeting

Jaroslav Adam (BNL)

Outline

- **1.** Tagger acceptance interval in x and Q^2 will be shown
- 2. Q^2 reconstruction in the tagger when beam effects are included
 - Prototype for Q² reconstruction was presented last time (April 13) here, is working over Q² in about 10⁻⁵ to 10⁻² GeV²
 - An update is given here for the case when beam effects of angular divergence and vertex spread are considered
 - The range of working Q^2 remains the same

Acceptance interval in x and Q^2

- *x* and *Q*² for events with hit in tagger
- A narrow correlated band for both event generators
- Can reach very low x
- At $Q^2 = 10^{-5}$, $x \sim 10^{-9}$

Figure: Quasi-real events in tagger

Figure: Pythia6 events in tagger

Beam effects in eic-lgen event generator

- Vertex spread with Gaussian beam profile
 - Driven by emittance in x and y and bunch length in z
 - Vertex positions are generated from Gaussians in x, y and z of a given width $\sigma_{x,y,z}$
 - ► Using pCDR high acceptance configuration without hadron cooling for 18 x 275 GeV ep beams:
 - ▶ IP RMS beam size is σ_x = 236 µm and σ_y = 16.2 µm, RMS bunch length is σ_z = 1.7 cm
- Angular divergence
 - Separate for horizontal and vertical divergence
 - Implemented as Gaussian rotations of particle 3-momentum in x and y
 - The specific angles are generated with pCDR RMS values of $\sigma_{\theta,x} = 163 \mu rad$ and $\sigma_{\theta,y} = 202 \mu rad$
 - Improvement over the initial studies on luminosity monitor, where only a single σ_{θ} was used for Gaussian smearing of electron polar angles
- For Pythia6 events the beam effects are implemented with an afterburner approach on the scattered electrons

Generated vertex positions

Jaroslav Adam (BNL)

Polar angle for generated bremsstrahlung photons

- Polar angles for photons, same procedure is applied to scattered electrons in bremsstrahlung events or electrons quasi-real photoproduction
- Comparison to H1 in H1-04/93-287 (1993)
- Solid curve in H1 plot is the parametrization and dotted curve is the case with divergence included
- Compatible with the shape we have

Acceptance of low- Q^2 tagger with and without beam effects

- Determined as a ratio of events with scattered electron hitting the tagger to all generated events
- Beam effects include the emittance and angular divergence, the new procedure is used here
- No change in upper limit of the acceptance
- More complicated shape, a dip between 10⁻⁵ and 10⁻⁴

Mechanism for Q^2 measurement in the tagger

 $Q^2 = 2EE'\left(1 - \cos(\theta_e)\right)$

- Hit position in x and y and electron energy E' is used to get the original angle θ_e
- Reconstruction matrix *R_{ijk}* is used to find θ_e for a given set of *x*, *y* and *E*'

Figure: Energy and polar angle

Figure: Hit position on the tagger

- Both plots show the same Pythia6 events which hit the tagger, beam effects are applied
- Energy-angle plot shows acceptance in θ_e from 0.01 mrad to 10 mrad and energy from 6 to 18 GeV

Reconstruction matrix R_{ijk} with beam effects included

- Each subplot for a given *i* is one of 12 intervals in *E_e*
- Segmentation in x and y is 0.5×0.5 mm², position gives *j* and *k*
- Color scale is mean θ_e for a given *ijk*, shown as log₁₀(θ_e)
- Similar shape as was for the case without beam effects was obtained here
- More smooth contours

Generated and reconstructed Q^2 with beam effects

- Reconstruction still works for Q² from 10⁻² down to 10⁻⁵ GeV², as was for the case without beam effects
- Not so divergent behavior for lower Q²
- The *R_{ijk}* was built with simulation of 100 M events of quasi-real photoproduction
- Reconstruction was performed on a sample of 5 M Pythia6 events, both for 18x275 GeV

- Interval of accepted events in x and Q^2 is a narrow correlated band
- Angular tagger acceptance ranges from 0.01 mrad to 10 mrad and energy acceptance from 6 to 18 GeV
- Q² reconstruction still looks feasible down to 10⁻⁵ GeV² with beam effects included
- Achieved with pads segmented by $0.5 \times 0.5 \text{ mm}^2$, also will depend on energy resolution
- Upper limit at 10⁻² GeV² is given by the acceptance

Backup

Mechanism of Q^2 reconstruction

- Polar angle θ is to be found as a function of scattered electron energy E_{e^-} and hit position on the tagger in x and y, with known electron transport through B2eR magnet
- Similar procedure was suggested in ZEUS study ZEUS-STATUS-REPT-1993, page 1054, but never implemented
- For each E_{e^-} , there is a particular distribution of hits in x and y, depending on angles θ (and azimuthal angle)
- $\bullet\,$ Front face of the tagger is segmented into pads of $0.5\times0.5\,\,mm^2$
- Values of θ are stored in 3-index reconstruction matrix R_{ijk}
- First index *i* gives a specific interval in *E_e*-
- Indices j and k give a specific pad along horizontal x and vertical y
- Reconstruction matrix *R_{ijk}* is built using Geant4 simulation of the tagger
- During reconstruction, electron energy gives value of *i* and hit position gives *j* and *k*
- Value of electron polar angle θ is retrieved from R_{ijk} , allowing to calculate the Q^2

Building the reconstruction matrix R_{ijk}

- Energy E_{e^-} is split into 12 intervals, giving 12 possible values of *i*
- Each subplot shows pads over all j and k along horizontal x and vertical y, for one particular value of energy i
- Polar angle θ at each *ijk* is given by color scale in terms of $-\log_{10}(\theta)$
- For each *ijk*, there is a particular distribution of θ , because any azimuthal angle can contribute
- Mean value of θ at each *ijk* is considered the final value for reconstruction
- Numerically, the θ angles are put as $\log_{10}(\theta)$
- The *R_{ijk}* was created using Geant4 simulation of 100 M events of quasi-real photoproduction

Model of quasi-real photoproduction in eic-lgen

- Event generator implemented to *lgen* using one photon exchange cross section from HERA study in Conf.Proc. C790402 (1979) 1-474
- The parametrization for quasi-real photoproduction in low-Q² approximation (Eq. II.6 in HERA study) is

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}x\mathrm{d}y} = \frac{\alpha}{2\pi} \frac{1 + (1-y)^2}{y} \sigma_{\gamma\rho}(ys) \frac{1-x}{x} \ (\mathrm{mb}) \tag{1}$$

• The total photon-proton cross section $\sigma_{\gamma p}$ is used from Regge fit in Phys.Lett. B296 (1992) 227-232:

$$\sigma_{\gamma p}(ys) = 0.0677(ys)^{0.0808} + 0.129(ys)^{-0.4525} \text{ (mb)}$$
⁽²⁾

- Equation 1, with input from Eq. 2, is used to generate values of Bjorken x and inelasticity y
- Kinematics is then applied to generate the electrons with output to TX or Pythia6 format
- Similar procedure was used for H1 low-Q² tagger in H1-04/93-287 (1993)

Low- Q^2 tagger in Geant4

- The tagger is represented as the box right to the luminosity system
- Beam electron and scattered electron are passing through the B2eR dipole magnet
- The scattered electron is stopped in the tagger
- The edge of the tagger is placed 10 cm away from the axis of the beam, *z* = 27 m
- For the acceptance studies shown here, the tagger is implemented as a box 20x20 cm, length 35 cm
- The tagger stops the track and marks the hit (no secondaries)