Update: Inclusive measurement in unpolarized ep collisions

Xiaoxuan Chu, 04/28/20

YR inclusive group

Charged Current Kinematics region at EIC

High energy is required in CC channel.

Data sample are simulated from Djangoh are 18x275 GeV

Kinematics:

True level in hadronic scattering: trueQ2, trueY, trueX, are the kinematic variables of the event at the hard scattering vertex.

Radiative correction level, Q2, y, x. They are calculated from neutrino. Includes effects from radiative corrections. These are used in reconstructing measured reduced cross section to do impact study.

Reconstructed level: Q2 rec, y^{rec}, x^{rec}. Use Jacquet-Blondel method on hadronic final state to reconstruct.

Radiative correction impact

Kinematics: y

Kinematics with Rad Correction

Data sample : Int L = 10 fb-1, Kinematics settings: 0.01 < y < 0.95, $10^2 \text{ GeV}^2 < Q^2 < 10^5 \text{ GeV}^2$

- At generator level, the input Q²>100GeV² works on Q² level instead of trueQ² level, trueQ² can access lower Q²
- Kinematics are smeared after including radiative corrections
- We will calculate reduced cross section on true level for impact study to make sure the cross section is as predicted.

The reduced cross section for inclusive CC *ep* scattering $\sigma_{r,CC} = \frac{2\pi x_{Bj}}{G_{E}^{2}} \left[\frac{M_{W}^{2} + Q^{2}}{M_{W}^{2}}\right]^{2} \frac{d^{2}\sigma_{CC}}{dx_{Bi}dO^{2}}$

 G_F = 1.16 \times 10⁻⁵GeV² and Mw = 80.385 GeV

Reconstruct Charged Current events cross section at true level

Int L = 10 fb-1, Kinematics settings: 0.01 < y < 0.95, $10^2 \text{ GeV}^2 < Q^2 < 10^5 \text{ GeV}^2$

Reduced cross section at true level with xfitter

Cross section at EIC are from slides 8 results (yellow band)

EIC measurement at highest energy of Charged Current events works good in agreement of theory predictions and HERAPDF.

Radiative correction effect

Detector impact

PID impact (1)

PID impact (2)

Full acceptance, all final state:Kaon, proton, pion, neutron and photon are detected:True level, radiative

х

 $Q^{2} [GeV^{2}]$

10²

10

 10^{3}

PID impact (3)

Detector acceptance

\$EICDIRECTORY/PACKAGES/eic-smear/scripts/smearHandBook.cxx

The part will affect CC events with final state particles: : Kaon, proton, pion, neutron, photon Total coverage of the handbook for tracker and hcal is -3.5 < eta < 3.5

Nparticles 5159113; Nparticles after Cut 3700076; losing ~30% of final particles

Detector acceptance effect final particles $x_{JB} = \frac{Q_{JB}^2}{sy_{JB}};$

[GeV] Energy [GeV] [∧=0 9] a^{×150} ¹⁰⁰ d¹⁰⁰ d¹⁰⁰ 10^{5} 10⁵ Beam remnant 10⁵ Successive. 80 10⁴ 10⁴ 10^{4} 60 10³ 10^{3} 10^{3} 100 100 40 10² 10^{2} 10² 50 50 20 10 10 10 0 -6 -4 -2 0 -10 -8 -6 -4 -2 0 2 10 10 4 6 8 -10 -8 -6 -4 -2 2 6 8 2 4 6 8 -10 -8 0 4 10 Detector accepted (-3.5 < eta < 3.5) p_T [GeV] 80 r ∑ ⊕ 140 10^{4} <u>ق</u> 120 70 10⁴ 10⁴ ^م100 60 10^{3} 10³ 10³ 50 80 80 60 40E 10² 10² 10^{2} 60 40 30Ē 20 40E 20 E 10 10 10 0 20 10Ē -20 0 01 -3 -2 2 3 2 -3 -2 0 2 3 -2 3 -4 -1 -4 -1 0 4 -4-3 0 4 4 -1

Detector acceptance effect on kine

$$x^{rec} = \frac{Q_{JB}^2}{Sy_{JB}}; \quad y^{rec} = \frac{(E - p_z)_h}{2E_e}; \ recQ^2 = \frac{p_{t,h}^2}{1 - y_{JB}}$$

15

Detector accepted: all final photon, pion, proton, neutron are included, -3.5<eta<3.5 True level, radiative

Detector acceptance effect on kine

$$x^{rec} = \frac{Q_{JB}^2}{Sy_{JB}}; \quad y^{rec} = \frac{(E - p_z)_h}{2E_e}; \ recQ^2 = \frac{p_{t,h}^2}{1 - y_{JB}}$$

16

Detector accepted: all final photon, pion, proton, neutron are included, -4<eta<4 True level, radiative

Smearing: very preliminary

\$EICDIRECTORY/PACKAGES/eic-smear/scripts/smearHandBook.cxx

The part will affect CC events with final state hadronic state:

Total coverage of the handbook for tracker and hcal is -3.5 < eta < 3.5 Smear::Device SmearThetaHadronic(Smear::kTheta, "0.001");

Hcal:

eta = -3.5 - -1: sigma_E/E ~ 0.45/sqrt(E)+0.06 eta = -1 - 1: sigma_E/E ~ 0.85/sqrt(E)+0.07 eta = 1 -- 3.5: sigma_E/E ~ 0.45/sqrt(E)+0.06

Tracking:

eta = -3.5 – -2.5: sigma_p/p ~ 0.1% p+2.0%	
eta = -2.51:	sigma_p/p ~ 0.05% p+1.0%
eta = -1 – +1:	sigma_p/p ~ 0.05% p+0.5%
eta = 1 – 2.5:	sigma_p/p ~ 0.05% p+1.0%
eta = 2.5 – 3.5:	sigma_p/p ~ 0.1% p+2.0%

PIDMatrix is based on HERMES RICH.

Smeared kinematics, very preliminary

NC Smearing: very preliminary

\$EICDIRECTORY/PACKAGES/eic-smear/scripts/smearHandBook.cxx

The part will affect NC events with final state electron: Total coverage of the handbook for emcal: -4.5 < eta < 4.5, The low Q² tagger settings are in progress, so far lowQ² tagger is not included in my results.

Summary

Charged current channel: final hadronic state

- 1. Radiative corrections effect
- 2. PID requirement: final state charged hadrons, neutrons, photons
- 3. Detector acceptance study
- 4. Eic-smear study is going on

Neutral current channel: outgoing electron

Electron PID requirements as function of rapidity

• Back up

Back up

Final state photons

Detector acceptance

\$EICDIRECTORY/PACKAGES/eic-smear/scripts/smearHandBook.cxx

The part will affect CC events with final state hadrons: : Kaon, proton, pion, neutron Total coverage of the handbook for tracker and hcal is -3.5 < eta < 3.5

losing ~30% of final hadrons after eta cut

Detector acceptance effect on kine

$$x^{rec} = \frac{Q_{JB}^2}{sy_{JB}}; \quad y^{rec} = \frac{(E - p_z)_h}{2E_e}; \quad recQ^2 = \frac{p_{t,h}^2}{1 - y_{JB}}$$

Perfect acceptance: all final pion, proton, neutron are included True level, radiative

