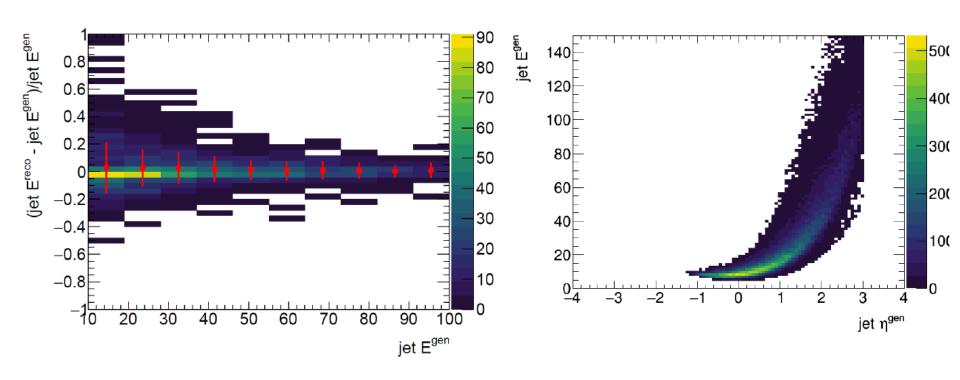
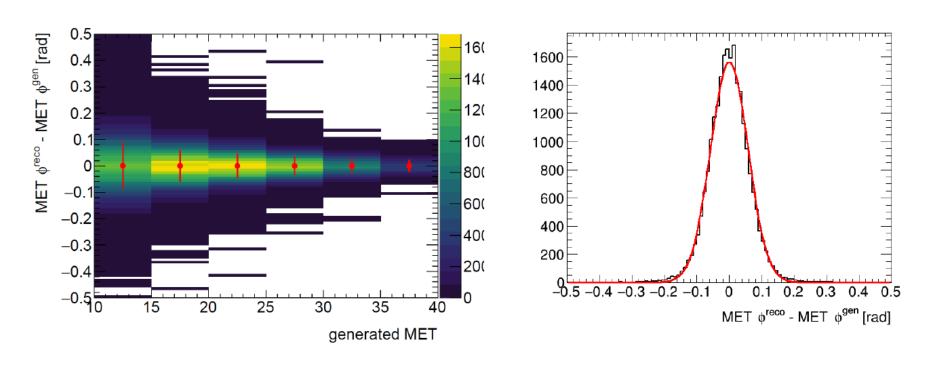
Jets and Heavy Quark Update

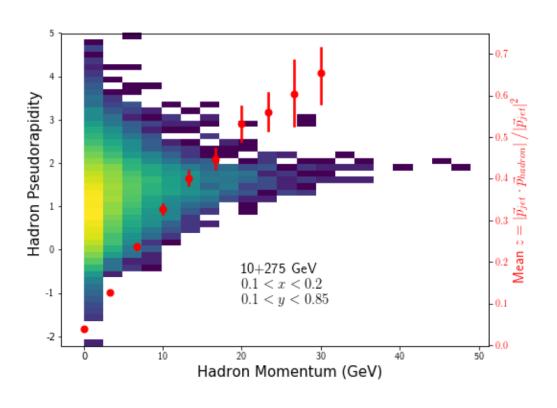

JHQ Conveners

YR Physics Conveners Meeting

05/06/2020


Jet performance

anti-kT R=1.0, particle-flow


~20% at 10 GeV, ~10% at 50 GeV

Neutrino azimuthal angle

~ 0.10 rad at 10 GeV, ~0.05 rad at 30 GeV

PID requirements:

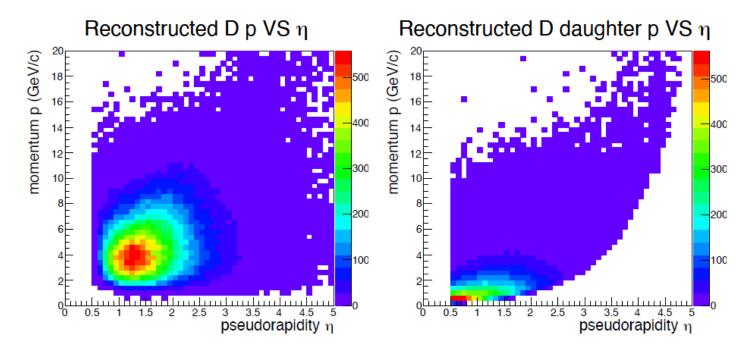
 Charged pions separation from Kaons and protons up to ~30 GeV

EIC detector in Delphes

https://github.com/miguelignacio/delphes EIC/blob/master/delphes card EIC.tcl

Tracking resolution, EMCAL resolution and HCAL resolution as in detector handbook.

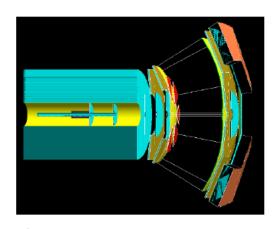
In addition:


- B=1.5 T, R=0.80 m, L = 1 m
- EMCAL granularity (dphi x deta):
 0.02 x 0.02 for |eta|<3.5
- HCAL granularity (dphi x deta):
 0.1 x 0.1 for |eta|<1.0
 0.025 x 0.025 for 1.0 |eta|<4.0
 (10x10 cm2 at 3.6 m, suggested by O. Tsai)
- HCAL resolution: 100%/sqrt(E) + 10% in barrel (0.0—1.0) 50%/sqrt(E) + 10% in encap (1.0—4.0)
- Tracking threshold 100 MeV pT;
 EMCAL threshold of 200 MeV; (noise ~ 30 MeV per tower)
 HCAL threshold of 500 MeV; (noise ~100 MeV per tower)
- No PID yet, but it can be included (LHCb is in Delphes).
 Need parametrization of efficiency and mis-identification matrix

- Other quantities, such as hadron-injet azimuthal angle resolution also explored
- Currently, analysis carried out in Delpes framework using detector parameters shown

Open Heavy Flavor With FST – Xuan Li

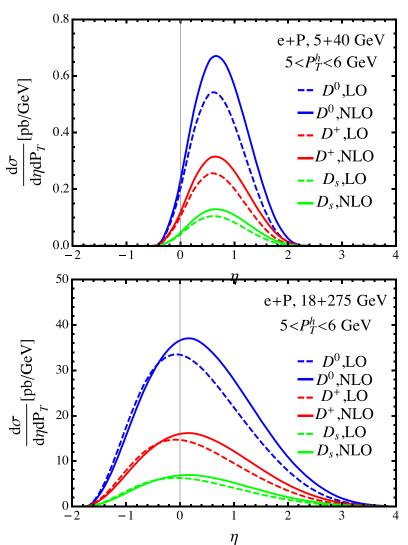
Kinematic distributions of reconstructed D-mesons

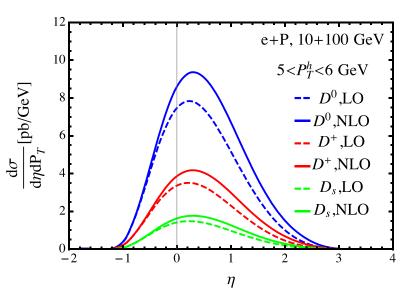

- 18GeV electron + 100 GeV proton collisions with Integrated luminosity: 10 fb⁻¹.
- Reconstructed D-meson momentum VS pseudorapidity (left) and the momentum VS pseudorapidity distribution for the D-meson decayed daughters (right).

Open Heavy Flavor With FST – Xuan Li

EIC Pavia plan

 The updated FST geometry has been implemented in the Fun4All framework with the Barbar magnet with the help from Jin Huang (BNL).

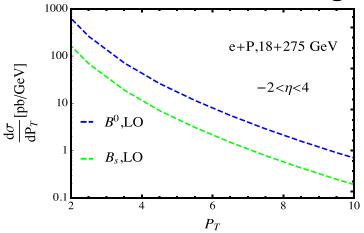



- We will continue optimize the design/geometry of the forward silicon tracker and evaluate the tracking performance.
- In the EIC Pavia meeting, we will report
 - Updated heavy flavor reconstruction with updated detector design and performance.
 - Updated physics projection such as R_{eA}.
 - Provide detector performance requirements for tracking and PID detector.

Kinematic maps at NLO for various D and B mesons

Haitao Li, Zelong Liu, Ivan Vitev Note – results preliminary

Evaluated using NLO code over all Q² range


Example of D mesons at 5 GeV for 2 different energy configurations

Uncertainties to be estimated Rough estimate of charm baryons ~ 10% of the mesons

Kinematic maps at NLO for various D and B mesons

Haitao Li, Zelong Liu, Ivan Vitev

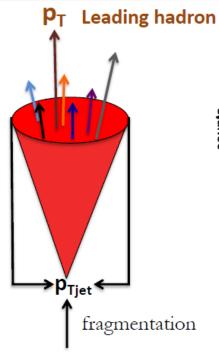
Integrated in the rapidity interval -2 < eta < 4

B mesons we still have at LO in some cases

(0.30		-	 ,		.,	-
	•				$10 < P_T^h <$	<11 GeV	•
(0.25		/ N	, e		-275 Ge	-
[pb/GeV]	0.20			N C	·		`]
b/G		- 1				B^0 ,LO	1
[p	0.15	-1	/			3 ⁰ ,NLO	1
니므	0.10	- //				B_s ,LO	1
$\frac{\mathrm{d}}{\mathrm{d}\eta}$		= H		N	$\left(-1\right)$	B_s ,NLO	1
(0.05	- 1//		A STATE OF THE STA			1
				1	The same of		1
(0.00	-1	0	1	2	3	4
				η			

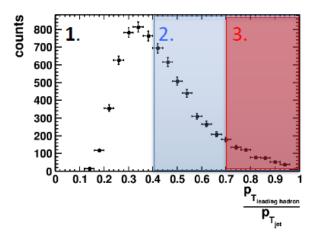
	$5+40~{ m GeV}$			$10{+}100~{\rm GeV}$			18+275 GeV		
$p_T^h [{\rm GeV}]$	[2,3]	[5,6]	[10,11]	[2,3]	[5,6]	[10,11]	[2,3]	[5,6]	[10,11]
π^+	1.4×10^7	136123	61	3.2×10^7	989140	26624	5.4×10^7	2.4×10^6	145501
π^0	8.0×10^{6}	72980	31	2.0×10^7	578330	14523	3.4×10^7	1.5×10^{6}	86560
π^-	3.3×10^{6}	16572	4	1.0×10^7	232546	3734	1.9×10^7	768976	36313
D^0	1.9×10^6	8490	1	9.0×10^{6}	173922	2432	2.4×10^7	924804	37115
D^+	854390	4057	1	3.9×10^{6}	78303	1145	1.0×10^7	406404	16632
D_s	360778	1646	0	1.7×10^{6}	32940	469	4.4×10^{6}	173427	7015
B^0	39712	647	0	566160	16915	346	2.6×10^6	115150	5376
B_s	10717	181	0	151256	4592	98	692331	30905	1472

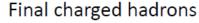
TABLE I: Event number of hadron production at the EIC at selected p_T bins of hadron with luminosity $10 \, \text{fb}^{-1}$ at different collision energy. The event number of B^+ is totally the same as B^0 .

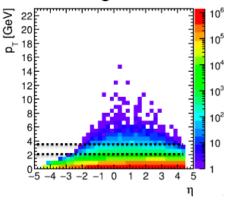

Note – results very preliminary

Can be compared to light hadrons, for example pions.

For Pavia – finalize the kinematic distributions

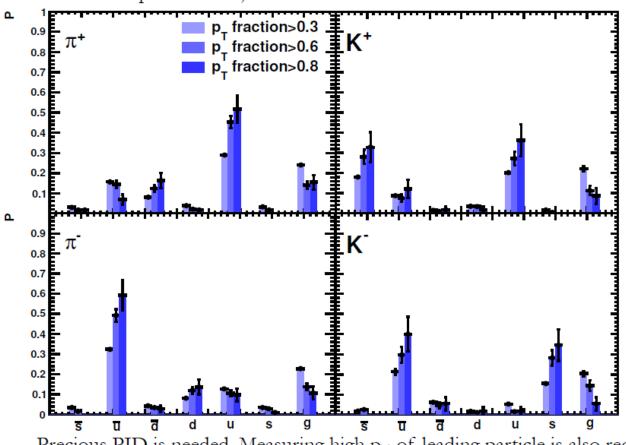

Jet Flavor Tagging – Xiaoxuan Chu


Flavor tagging



parton: g/q

Leading charged hadron inside (Kaon, pion, proton) Photon side jet: highest p_T hadron



- 1. p_T fraction: no cut
- 2. p_T fraction: >0.4, $\sim p_T$ of leading hadron>2-2.4 GeV, -3<eta<4
- 3. p_T fraction: >0.7, $\sim p_T$ of leading hadron>3.5-4 GeV, -2<eta<3.5

Jet Flavor Tagging - Xiaoxuan Chu

Flavor tagging (2)

The correlation between the beamparton flavor and the type of the leading hadron inside photon side jet.

Precious PID is needed. Measuring high p_T of leading particle is also required.

Additional Analyses:

- Dijet Sivers Liang Zheng
- Angularity Brian Page
- > 1-Jettiness Leticia Mendez

Conclusions:

- Active work on many channels with several simu / smearing packages
- Should have kinematic maps ready for Pavia
- Focus on joint sessions for Pavia SIDIS, Inclusive, Detector Groups (Calorimeters, Tracking, PID)