Kinematic constraints in the SIDIS WG

Ralf Seidl (RIKEN), Justin Stevens (William&Mary), Alexey Vladimirov (Regensburg), Anselm Vossen (Duke), Bowen Xiao (Central Normal University)

Single hadron SIDIS for quark TMDs, helicities, (n)FFs, etc

Single hadron SIDIS for quark TMDs, helicities, (n)FFs, etc

Polar angle in steps of 5 degrees

4

Di-hadrons for Tensor charge/BM/Higher Twist

Chris Dilks, et. al

Di-hadrons for Tensor charge/BM/Higher Twist

Anselm Vossen, et. al 2 sigma separation Graph Graph Graph ... ٠ 0.8 0.6 0.6 0.6 Selecting $\pi\pi$ pairs Selecting πK pairs Selecting KK pairs 04 04 0.4 0.2 0.2 0.2 $p_T[GeV]$ 2.5 2.5 $p_T[GeV]$ $p_T[GeV]$ • Fraction of reconstructed $\pi\pi$ pairs Fraction of reconstructed πK pairs • Fraction of reconstructed KK pairs 3 sigma separation Graph Graph Graph . ٠ 0.8 0.6 Selecting *r*K pairs Selecting $\pi\pi$ pairs Selecting KK pairs 0.4 0.4 0.4 0.2 0.2 0.2 5 6 7 $p_T[GeV]$ 4 5 $p_T[GeV]$ $p_T[GeV]$

Liang Zheng, et. al

7

Di-hadrons(jets,HF) for low-x and gluon Sivers

-	Nomenclature		Track	ing			Electrons		π/К/р		HCAL	N.A
η			Reso	ution	Allowed X/X_0 S	Si-Vertex	Resolution σ_{E}/E	PID	p-Range (GeV/c)	Separation	Resolution σ_{E}/E	widons
-6.9 to -5.8		low-Q2 tagger	<u>σθ/θ</u> < Q2	< 1.5%; 10-6 < 10-2 GeV2								
 -4.5 to -4.0	Auxiliary Detectors	Instrumentation to separate										
-4.0 to -3.5		charged particles					2%/\/F					
		from photons					270/12					
-3.5 to -3.0 -3.0 to -2.5			<u>σ_p/p</u> 0.1%	<u>~</u> ⊕0.5%								
-2.5 to -2.0		Backward	σ _n /p									
-2.0 to -1.5		Detector	$\sigma_{\rm p}/p$	Gen	erally	simila	ar to si	ngle	e hadro	n mea	asureme	ents:
-1.5 to -1.0			0.05		,							
-1.0 to -0.5				σΙιιο	n Sive	orc.	fo	wa	rd regio	n (hic	wher y)	
-0.5 to 0.0	Central Detector	or Barrel	<u>σ_p/p</u>	5140		-13.		vva	i a i egio	311,118		
0.0 to 0.5			<u>~0.0</u>	Satu	iration	\sim	ntral/k	hack	word ro	ngion	(ow x)	
0.5 to 1.0				Jatu	Πατισι	1. LE	iiiiai/ k	Jack	waru re	giun		
1.5 to 2.0			<u>σ_p/p</u>		بريد جاج ا		-					
2.0 to 2.5		Forward Detectors	<u>~0.0</u>	• F	iign tr	аскіп	ig reso	IUTIC	on need	led at	nigner	
2.5 to 3.0			σ _n /p		-						-	
3.0 to 3.5			<u>0.1%</u>	n	nome	nta						
3.5 to 4.0		Instrumentation										
4 0 to 4 5		to separate charged particles		• f	ull azi	muth	al cove	erag	e for az	imuth	nal	
4.0 10 4.5		from photons										
	Auxiliary Detectors	Neutron Detection	1	С	orrela	ation	needeo	b				
		Proton	<u>σ_{intrii}</u> 1%·/									
> 6.2		Spectrometer	<u>1/0, F</u> 0.2 <	p ₊ < 1.2								
	5/6/2020		GeV/	<u>, </u>		YI	R SIDIS working	group st	tatus			

Gluon Sivers measurement requirement from charged dihadron channel

ep 18x275 GeV 0.01<y<0.95, 1<Q²<2 GeV² charged hadron, $|\eta| < 4.5$, $p_T^* > 1.4$ GeV, $z_h > 0.1$, $k_T^*/P_T^* < 0.7$, * indicates $\gamma^* p$ c.m.s frame

 $p \vee s \eta$ for scattered electron and charged hadron pairs

Liang Zheng, et. al

Gluon Saturation from charged dihadron channel

ep 18x110 GeV 0.6 < y < 0.8, $1 < Q^2 < 2 \text{ GeV}^2$ charged hadron, $|\eta| < 4.5$, $p_{T \text{ trig}}^* > 2 \text{ GeV}$, $p_{T \text{ assc}}^* > 1 \text{ GeV}$, $0.2 < z_h < 0.4$, * indicates $\gamma^* \mathbf{p}$ c.m.s frame

 $p \text{ vs } \eta$ for scattered electron and charged hadron pairs

 $p_T vs \Delta \phi$ for associate hadron relative to leading hadron

Liang Zheng, et. al

Lambda measurements

Momentum vs theta

Jinlong Zhang, et. al

Final p_T limits

-18x275 10 - 10x100 -5x100 -5x41 10² 10 0 2 з 1 4 p_(GeV) pt of proton Entries 6167 Mean 0.6228 10² 77.30% 4.48% 10

pt of proton

- p_T of pion and proton > 0.3 GeV
- Red is independent 0.3 GeV cut

2

0

1

• Blue File Beombined eta and pT cut 6

p_(GeV)

Lambda mass vs eta

Entries

Mean

RMS

0.05

Entries Mean

0.05

Smearing photon E for Sigma0

- In addition to the tracking smearing (handbook)
- Handbook setup push mass to larger side
- Lambda and sigma peak start merging at 3%/√E

Angle for theta, radius for open angle between lambda and photon

Spectroscopy measurements: $ep \rightarrow Zc+n, Zc+ \rightarrow J/\psi\pi+$

Justin Stevens, et. al

η	Nomenclature		Tracking Resolution	Allowed X/X _o S	Si-Vertex	Electrons Resolution σ _ε /E	PID	π/K/p p-Range (GeV/c)	Separation	HCAL Resolution σ ₋ /E	Muons
-6.9 to -5.8		low-Q2 tagger	<u>σθ/θ < 1.5%; 10-6</u> < Q2 < 10-2 GeV2								
 -4.5 to -4.0	Auxiliary Detectors	Instrumentation to separate									
-4.0 to -3.5		<u>charged particles</u> from photons				<u>2%/√E</u>					
-3.5 to -3.0 -3.0 to -2.5		Declassed	<u>σ_p/p ∼</u> 0.1%⊕0.5%								
-2.5 to -2.0		Detector	<u>σ_p/p 0.1%⊕0.5%</u>	1	<u>rbd</u>	<u>2%/VE</u>	<u>π</u>	<u>≤ 7 GeV/c</u>		<u>~50%/ve</u>	
-2.0 to -1.5 -1.5 to -1.0			<u>σ_p/p</u> <u>0.05%⊕0.5%</u>			<u>7%/ve</u> <u>7%/ve</u>	suppression	i			
-1.0 to -0.5 -0.5 to 0.0 0.0 to 0.5	Central Detector	<u>Barrel</u>	<u>σ_p/p ~0.05%×p+0.5%</u>	<u>~5% or less X</u>	<u>σ_{xyz} ~ 20 μm,</u> d <u>o</u> (z) ~d <u>o</u> (rΦ) ~ 20/p _T GeV μm +		<u>1:10⁴</u>	<u>≤ 5 GeV/c</u>	<u>≥3σ</u>		<u>TBD</u>
0.5 to 1.0 1.0 to 1.5 1.5 to 2.0			<u>o_p/p ~0.05%×p+1.0%</u>	2 2	<u>5 μm</u>	(40,42)8/ (45		<u>≤ 8 GeV/c</u>		- = 00/ / /=	
2.0 to 2.5 2.5 to 3.0 3.0 to 3.5		Eorward Dateslors	<u>σ_p/p ~</u> 0.1%×p+2.0%	Even m	ore forw	ard than S	IDIS c	channels, re	quires hi	gher momer	nta
3.5 to 4.0 4.0 to 4.5		Instrumentation to separate charged particles from photons		+ forwa	ird neutr	on tagginរួ	g				
	Auxiliary Detectors	Neutron Detection	<u>1</u>								
> 6.2	5/6/2020	<u>Proton</u> <u>Spectrometer</u>	$\frac{\sigma_{intrinsic}(t)/ t <}{1\%; Acceptance:}$ $\frac{0.2 < p_t < 1.2}{GeV/c}$		YR	SIDIS working	group st	atus			

5/6/2020

Semi-inclusive Detector

Justin Stevens, WILLIAM & MARY 3

Overall status

- All channels are progressing well, all have produced some simulation data (mostly pythiaerhic+eicsmear, some dedicated generators and Pythia8)
- Application of latest smearing package (from Kolja's mail) ongoing
- Some pseudo-data already with theorists for impact studies
- Requests for Pavia meeting: Maybe again joint SIDIS/HFjets session.

Golden channels I

Measurement/process	Main detector requirements	Anticipated plot	Comments
Quark Sivers, 3D momentum structure, TMD evolution from single hadrons \rightarrow 3D image (x , k T) of the Sivers Function, Evolution test of Sivers at intermediate x , Tensor charge via Collins Alexey Vladimirov	• η acceptance for hadrons • angular resolution • granularity of the detector (central to forward -1 to 4), • pi/K/p identification • Comments: PID \leftrightarrow Tracking, B -field, Δ p/p, min p	 pseudo-3D Sivers function as a function kt for various x bins, Value of Tensor charge uncertainties + plot vs x, Q2 dependence of Sivers function or A\$%at fixed x 	 Use of existing simulations at Elke's group + smearing + weights originating from theorists, weights for Sivers asymmetries prepared Work on common database ongoing, integrate in SW environment Theory work on fits/parameterizations. First tests for unpol TMD data
Gluon Sivers via di- jets/dihadrons → Probing the size of the gluon Sivers function Bowen Xiao	acceptance for back-to- back Dihadrons	Size of the asymmetry as a function of <i>x</i>	 Continuation of study based on arXiv:1805.05290 together with current EIC detector design consideration of different jet algorithms Elke, Zheng, Lee and Yin Possible different parametrizations of gluon Sivers function inputs from Pavia 17

Golden channels II

Measurement/process	Main detector requirements	Anticipated plot	Comments
Spectroscopy possibilities → Representative spectroscopy channel : X,Y → J/Ψππ, DD* Justin Stevens	 dilepton identification for J/psi displaced vertex pi/K separation for open charm forward proton/neutron recoils from diffractive production (similar to DVCS reqs) 	Kinematic coverage for decay particles in representative channels Possibly expected limits on coupling vs mass for J/Ψππ, DD* final states	Generator, EICsmear for mass resolution etc., bkgd. estimation

Silver channels I

Measurement/process	Main detector requirements	Anticipated plot	Comments
Sea quark helicity measurements →flavor separated (anti)quark helicity distributions over wide range of x Ralf Seidl	hadron momentum and energy resolution in forward direction (2 < η < 4) for CC events	Update of previous sea quark helicity PDF uncertainty plots	 Work will follow ongoing sensitivity studies by Elke's group + Argentinian global fitters. Implementation of detector smearing, etc needs to be added to existing studies. Concentration on CC and <i>D</i>/3<i>He</i>.
FFs/nFFs/nPDFs via single hadron FF →Single hadron fragmentation functions for ep and eA for FFs, nFFs, nPDFs Ralf Seidl	See TMD SIDIS reqs	nPDF uncertainty expectation, (n)FF Expectation	 Simulations prepared using official 4 ep and 3 eAu beam energy combinations, for smeared simulation BeAST resolutions were used in eicsmear. reweighted eAu multiplicitis using nFFs from SSZ fit Not implemented: magnetic field and PID (hadron, momentum, rapidity) impact.
5/6/2020		YR SIDIS working group statu	IS 19

Silver+New channels

Measurement/process	Main detector requirements	Anticipated plot	Comments
Di-hadron correlations in eA →low x →Probing the onset of saturation phenomenon Bowen Xiao	backward hadron acceptance, granularity	decorrelation plot as in white paper	Continuation of work based on arXiv:1403.2413 with extension to jets with different algorithms using the new collisional energies at eRHIC.
Di-hadron FF for Tensor charge/Boer-Mulders Anselm Vossen	Single hadron reqs+min <i>z</i> for partial wave expansion	 Impact on tensor charge/transversity extraction Projected BM asymmetries 	Initial simulations prepared for kin. Ranges, Reweighting of asymmetries next
Lambda related spin measurements →L/T spin transfer, polarizing FFs (universality), jet structure Anselm Vossen	 ∧ acceptance Slow pion → low momentum cutoff, displaced vertex 	 Precision of Λ polarization measurements 	Detailed study of acceptances and momentum requirements