Dihadrons at the EIC

Christopher Dilks
4 May 2020
YR-SIDIS Meeting

Dihadrons: Probing Spin-Orbit Correlations in Hadronization

Unpolarized SIDIS:

\checkmark Cahn Effect: quark transverse momentum leads to azimuthal modulations of SIDIS cross section
Boer-Mulders Effect: Non-collinear quarks in an unpolarized proton can have transverse polarization, also contributing azimuthal modulations

Boer-Mulders and Cahn effects are comparable in single hadron production

- HERMES and COMPASS data, e.g. Phys.Rev.D 81 (2010) 114026
- Dihadrons can help decouple BM from Cahn
- Extra degree of freedom in dihadrons
- Cahn effect impacts dihadron total momentum direction P_{h}
- Utilize azimuthal angle about P_{h}, in addition to the azimuth about the virtual photon

Advantages from a broader and higher \mathbf{Q}^{2} range at an EIC

- Broader Q^{2} range probes evolution effects
- Higher Q^{2} suppresses Cahn effect in single-hadron asymmetries (Cahn is twist-4)
- Lower Q^{2} for overlap with other SIDIS experiments

Dihadrons: Probing Spin-Orbit Correlations in Hadronization

Longitudinally polarized SIDIS:

- Helicity DiFF $\mathrm{G}_{1}{ }^{\perp}$:

- Not yet constrained by data!
- Spin-orbit correlations in hadronization

- Fragmenting quark acquires transverse polarization via 'wormgear' splitting in the quark-jet hadronization model
- Preliminary CLAS12 data indicate significant effect, dependent on invariant mass

Collinear Twist-3 PDFs e(x) and $h_{\llcorner }(x)$:

- CLAS6 data provided the first $\mathrm{e}(\mathrm{x})$ extraction, consistent with models; CLAS12 data are in agreement
- Physical Interpretation via moments of $\mathrm{e}(\mathrm{x})$:
- Transverse color-force on a transversely polarized struck-quark, in an unpolarized proton
- πN sigma terms:
- Quark mass contribution to proton mass
- Quark chromomagnetic dipole moment $\rightarrow \mathrm{CP}$-odd $\pi-\mathrm{N}$ coupling
- No experimental constraints yet for $h_{L}(x)$

Transverse Momentum Dependent Distributions and Fragmentation Functions

Twist-2 TMDs

QUARKS	unpolarized	chiral	transverse
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1 T} h_{1 T}^{\perp}$

Twist-3 TMDs

N / q	U	L	T
U	f^{\perp}	g^{\perp}	$h(e)$
L	f_{L}^{\perp}	g_{L}^{\perp}	$\left(h_{I}, e_{L}\right.$
T	f_{T}, f_{T}^{\perp}	$\left.g_{T}\right), g_{T}^{\perp}$	$h_{T}, e_{T}, h_{T}^{\perp}, e_{T}^{\perp}$

$\mathrm{e}, \mathrm{h}_{\mathrm{L}}$, and g_{T} are collinear

Dihadron Fragmentation Functions (DiFFs)

$h_{1} h_{2} / q$	\mathbf{U}	\mathbf{L}	\mathbf{T}
$\mathbf{U U}$	$D_{1, O O}$		$H_{1, O O}^{\perp}$
$\mathbf{L U}$	$D_{1, O L}$		$H_{1, O L}^{\perp}$
$\mathbf{L L}$	$D_{1, L L}$	$H_{1, L L}^{\perp}$	
$\mathbf{T U}$	$D_{1, O T}$	$G_{1, O T}^{\perp}$	$\begin{cases}H_{1, O T}^{\perp} & \text { if } m<0 \\ H_{1, O T}^{\triangleleft} & \text { if } m>0\end{cases}$
$\mathbf{T L}$	$D_{1, L T}$	$G_{1, L T}^{\perp}$	$\begin{cases}H_{1, L T}^{\perp} & \text { if } m<0 \\ H_{1, L T}^{\triangleleft} & \text { if } m>0\end{cases}$
$\mathbf{T T}$	$D_{1, T T}$	$G_{1, T T}^{\perp}$	$\begin{cases}H_{1, T T}^{\perp} & \text { if } m<0 \\ H_{1, T T}^{\triangleleft} & \text { if } m>0\end{cases}$

Dihadron Structure Functions \rightarrow PDF convolved with DiFF

$F_{U L}$

$$
h_{1 L}^{1} \otimes H 1
$$

$F_{L L} \quad g_{1 L} \otimes D_{1} \quad e_{L} \otimes H_{1}$
$F_{U T} \quad f_{1 T}^{\perp} \otimes D_{1}+g_{1 T} \otimes G_{1} \quad f_{T} \otimes D_{1} \quad h_{T} \otimes H_{1}$ $h_{1} \otimes H_{1}$ $f_{T}^{\perp} \otimes D_{1} \quad h_{T}^{\perp} \otimes H_{1}$
$h_{1 T}^{\perp} \otimes H_{1}$

$$
\begin{array}{|llll|}
\hline \boldsymbol{F}_{L T} & g_{1 T} \otimes D_{1}+f_{1 T}^{\perp} \otimes G_{1} & g_{T} \otimes D_{1} & e_{T} \otimes H_{1} \\
& & g_{T}^{\perp} \otimes D_{1} & e_{T}^{\perp} \otimes H_{1} \\
\hline
\end{array}
$$

Dihadrons are sensitive to a zoo of PDFs and DiFFs

- Cross section modulations
- Boer-Mulders Function
- Longitudinal spin asymmetries
- Helicity DiFF $G_{1}{ }^{\perp}$
- Collinear Twist-3 PDFs

Transverse Spin Asymmetries

- Sivers, Wormgear, Transversity, Pretzelocity
- Twist-3 TMDs

Dihadron Kinematics

Dihadron CoM production angle:

Event Selection

$Q^{2}>1 \mathrm{GeV}^{2}$ athomensmenem
$E_{e}^{\prime}<E_{e} \quad$ scattered electron has less energy than incident electron
$W>3 \mathrm{GeV}$ exclude elastic / resonance region
$0.01<y<0.95 \begin{aligned} & \text { lower bound is to avoid region in which calculating } \mathrm{x} \text {, Q2, etc. via the } \mathrm{e}^{\prime} \\ & \text { momentum may differ from that from JB method }\end{aligned}$
$X_{F_{h}}>0$ ensures hadrons are produced in the current fragmentation region
$Z_{h}>0.01$ cuts out long M_{h} tail at $\mathrm{z} \sim 0$ peak (need to think about...)
$z_{h_{1}} h_{2}<0.95$ helps avoid exclusive region

For Kinematic Maps, focus on $\pi^{+} \pi^{-}$

Dataset

- Event Generation

- Pythia8 + DiRE (plan to switch to Pythia6+RADGEN soon)

Energies:
 - $5 \times 41 \quad \sqrt{ }=28.7 \mathrm{GeV}$
 - $5 \times 100 \quad \sqrt{ }=44.7 \mathrm{GeV}$
 - $10 \times 100 \mathrm{~V}=63.3 \mathrm{GeV}$
 - $18 \times 275 \mathrm{Vs}=140.7 \mathrm{GeV}$

- 1M events
- Radiative corrections (including QED) enabled via `PDF:lepton=on
- All other parameters follow `dis_example.cmnd` in the escalate tutorial notebook
- Kinematic maps below focus on 10x100 and 18x275
- Fast Simulation
- `eic_smear` with the `handbook` detector setting
- uses custom standalone eJANA plugin for production of dihadron trees
\square Analysis
- Dihadron trees compatible with CLAS analysis code, generalized for EIC
- Architecture for asymmetry fits / projections is ready
- Projections for partial wave amplitudes is also possible
- Kinematic Studies
- PID studies
$\left(x, Q^{2}\right)$ Plane for 5×41 and 5×100

$5 \times 41 \mathrm{GeV}$

Q^{2} vs. x for selected dihadrons

$5 \times 100 \mathrm{GeV}$

Q^{2} vs. x for selected dihadrons

$\left(x, Q^{2}\right)$ Plane for 10×100 and 18×275, and Binning for Kinematic Maps
$10 \times 100 \mathrm{GeV}$
Q^{2} vs. x for selected dihadrons

$18 \times 275 \mathrm{GeV}$
Q^{2} vs. x for selected dihadrons

The next slides will focus on these two beam energy settings
Solid black lines demarcate ($\mathrm{x}, \mathrm{Q}^{2}$) bin boundaries, used in the following slides
$\left(x, Q^{2}\right)$ Binning \rightarrow Matrix of Plots

full Q^{2}
range

- Bottom-left four entries are the 4 bins shown in the (x, Q^{2}) plane
- Top row and right row respectively integrate over Q^{2} and x
- Top-right entry is for the full x and Q^{2} ranges

$10 \times 100 \mathrm{GeV}$

$\pi^{+} \quad \eta$ vs. p

$18 \times 275 \mathrm{GeV}$

$18 \times 275 \mathrm{GeV}$

$10 \times 100 \mathrm{GeV}$
q_{T} vs. $e^{\prime} p_{T}$
$18 \times 275 \mathrm{GeV}$

$10 \times 100 \mathrm{GeV}$
\mathbf{q}_{T} VS. $\boldsymbol{\pi}^{+} \mathrm{p}_{\mathrm{T}}$
$18 \times 275 \mathrm{GeV}$

$\pi^{*} \pi^{\prime} \eta$ vs. p. for $1<0^{0^{2}<10 \text { and } 0.005<x<1}$

$\pi \pi \eta$ vs. p. tor $1<0^{2}<10$ and full x

$10 \times 100 \mathrm{GeV}$

PID Performance

Anselm Vossen

Using 2σ separation

- Fraction of reconstructed $\pi \pi$ pairs
- Fraction of reconstructed πK pairs
- Fraction of reconstructed KK pairs

Using 3σ separation

- Fraction of reconstructed $\pi \pi$ pairs
- Fraction of reconstructed πK pairs
- Fraction of reconstructed KK pairs

Reconstructing π^{0} with $E_{\gamma}>200 \mathrm{MeV}$

Reconstructing η with $E_{\gamma}>200 \mathrm{MeV}$

$-1.5<\eta<0.5$

$0.5<\eta<4.5$

Summary

- Dihadrons access spin-orbit correlations in hadronization and twist-3 (TMD)PDFs
- EIC simulation studies for SIDIS dihadrons are well underway
- Next Steps:
- Asymmetry Projections
- Partial Wave Projections
- Impacts of p_{T} cuts
- Additional dihadron channels, involving neutral pions and kaons
- Fast simulation impact on dihadron kinematics

