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• Public webpage
• arXiv submission
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Analysis Status

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-59/
https://arxiv.org/abs/2005.02983


• Introduction:
- SM, LHC, and ATLAS
- Dijet resonance searches
- Classification without Labels (CWoLa)
- CWoLa Hunting

• CWoLa hunting in ATLAS
• Results
• Conclusion
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Outline
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Introduction
Standard Model and Jets
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Standard Model of Particle Physics

[2]
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Standard Model of Particle Physics
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Jets

[4]
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Beyond the Standard Model

• Problems
- Gravity

• Relevant at much higher energy scales (Planck scale)
- Hierarchy Problems

- Dark Matter

- Strong CP Problem; Muon g-2; Matter-antimatter asymmetry

mt / mu ~ 105 me / mν ~ 106 mP / mh ~ 1019

[5]
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Beyond the Standard Model
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• Relevant at much higher energy scales (Planck scale)
- Hierarchy Problems

- Dark Matter
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Many Beyond-the-Standard-Model theories propose the existence of new particles that 
can be produced and/or detected at the LHC
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Beyond the Standard Model

• Problems
- Gravity

• Relevant at much higher energy scales (Planck scale)
- Hierarchy Problems

- Dark Matter

- Others: Strong CP Problem; Muon g-2; Matter-antimatter asymmetry

mt / mu ~ 105 me / mν ~ 106 mP / mh ~ 1019

Many Beyond-the-Standard-Model theories propose the existence of new particles that 
can be produced and/or detected at the LHC

Many of these new particles decay into jets
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Introduction
LHC and ATLAS
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Large Hadron Collider (LHC)

[6]
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ATLAS

[7]
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ATLAS Detector

[8]
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Jets in ATLAS

[9]
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Introduction
Dijet Resonance Searches

Classification without Labels (CWoLa)
and

CWoLa Hunting



• Dijet searches have a long history in ATLAS and in HEP in general
- Search for “bump” in dijet invariant mass spectrum

• Dedicated searches for A -> {e/𝛾,g,q,b,W,Z,H} x {e/𝛾,g,q,b,W,Z,H}
• Need generic search for A -> BC

- One or both of B,C could be BSM
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Motivation

• CWoLa hunting (arXiv:1805.02664): 
New bump finding technique sensitive 
to these exotic signatures

• Builds on dijet search to be more 
sensitive to a broad class of models

[10]

https://arxiv.org/abs/1805.02664
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Dijet Resonance Searches

• Generic searches for new massive particles decaying to jets

Inclusive selection
on B,C

Specific selection
on B,C

A

C (jet)

B (jet)

[10,11,12]
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Resonance Searches

• Generic searches for new massive particles

Inclusive selection
on B,C

Learned selection
on B,C

A

C (jet)

B (jet)

[10,11,12,13]
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

CWoLa
Classification 

Without Labels
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Classification Without Labels (CWoLa)

[14]
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CWoLa Hunting

Features of B, C

A

C (jet)

B (jet)

[12,15]
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Sensitivity of CWoLa Hunting

CWoLa sensitive to all!
(except maybe μ)

[16]

For citations 
see [16]

https://arxiv.org/pdf/1907.06659.pdf
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Sensitivity of CWoLa Hunting

CWoLa sensitive to all!

[16]

For citations 
see [16]

https://arxiv.org/pdf/1907.06659.pdf


• Mostly uncovered: A->BC(JJ) (B and/or C BSM)
• BSM Masses, SM properties

- Impact parameter, number of prongs, etc.
- Exotic signatures and combinations

• CWoLa sensitive to all! (depending on 
features used)

• This analysis:
- Using reduced feature set (Yi = {mJ}), provide 

limits on A->BC generic narrow resonance
- Smart way of doing 3D bump hunt

• Currently no dedicated 3D bump hunt in 
ATLAS -> new result

24

Sensitivity of CWoLa Hunting

A

C

B



• Trials factor for discovery potential with large numbers of bins

• In 3D mA,mB,mC space, nbins >> 1
• CWoLa hunting (for fixed mA):

25

Trials Factors

High probability of large excessPoiss(B) Poiss(B)…

nbins

)max(

Poiss(B) Poiss(B)…argmax( )

Low probability of large excessPoiss(B) Poiss(B)…

Poiss(B+S) Poiss(B)…argmax( )

Excess in bin with signalPoiss(B+S) Poiss(B)…

Background-only

True signal present
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CWoLa Hunting in ATLAS



• Bump hunt in dijet invariant mass spectrum
• Signal regions: Bins set by dijet mass resolution (20%)
• Bins used for training signal vs sideband
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Setup - mJJ
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Learning Setup



• Features are X = (m1,m2) (decorrelated)

29

Setup - Features

Background
Signal Region Signal

Background
Signal region vs sidebands

Background + signal
Signal region vs sidebands

Excess! NN 
should learn 
to target
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Learning Setup
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Learning Setup – NN Rescaling
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Learning Setup – NN Rescaling

Fixed selections for analysis
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NN Output

More signal injected
➔
NN is better at tagging signal
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Learning Setup
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Learning Setup
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Learning Setup
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Learning Setup
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Learning Setup



• p-value in signal regions for each mJJ

39

Statistical Interpretation – Model-independent Results

Smooth parameterized fit function



• With injected signal strength μ:
- Apply NN selection ϵ (depends on μ)
- Let μ be POI and set 95% CL limits in the usual way 
- Limit depends on injected signal strength!

40

Statistical Interpretation – Model-dependent Results



• If excluded >= injected, then trust limit
- Network should be better if truly more signal than injected

• If excluded < injected, then don’t trust limit
- Network could be worse if truly less signal than injected

• -> Best limit is minμ(max(CL(μ),μ))
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Statistical Interpretation – Model-dependent Results

• If excluded >= injected, then trust limit
- Network should be better if truly more signal than injected

• If excluded < injected, then don’t trust limit
- Network could be worse if truly less signal than injected

• -> Best limit is minμ(max(CL(μ),μ))

41

Statistical Interpretation – Model-dependent Results
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Results



• NN output with no signal injected
• N.B.: Efficiency=0 (high NN score) somewhere by definition

43

NN Output

[1]

mJJ = [2.74, 3.28] 
TeV



• NN output with no signal injected and with signal injected
• N.B.: Efficiency=0 (high NN score) somewhere by definition
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NN Output

[1]

For all:
mJJ = [2.74, 3.28] 
TeV



• Significances of data in signal regions with respect to background-only fit
• Signal regions stitched together -> can be discontinuous

45

Fits in Signal Regions

[1]



• Significances of data in signal regions with respect to background-only fit
• With injected signal to demonstrate power of method
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Fits in Signal Regions

[1]



• Limits (after injecting signal)

47

Limits

Limits for 
some signals 
>2x better!

Dijet search: 
small-R jets

Diboson
search: more 
sensitive to 
one signal
(uses ntrack, 
D2)

[1]



• Limits (after injecting signal)

48

Limits

Limits for 
some signals 
>2x better!

Some signals 
not found by 
NN

[1]



• Tagging based on B, C jet mass

- Add other jet features
• Jet substructure

• Other anomaly-detection algorithms

49

Future Directions

[1]



• Generic A->B(jet)C(jet) dijet resonance search using CWoLa hunting
• 3D bump hunt in mA,mB,mC

- Avoids large trials factor
• Learn to tag directly from data
• Fit to mJJ spectrum after tagging

- With no signal injected, no evidence for excess
- With signal injected

• NN learns to tag many signals
• Exclusion limit improved significantly

50

Conclusion
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Backup
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Landscape of Model-Independent Searches

[17]



• What is CWoLa hunting sensitive to? How to set limits?
• How to make sure cuts don’t sculpt background?

- Correlation of features with mJJ

- Train/test split
• Why not a direct search?

- Direct searches – more sensitive, large trials factor
- CWoLa hunting – sensitive to each signal, avoid large trials factor

• Train/test split

54

Natural Questions for CWoLa Hunting

[18] Signal efficiency (WX)

Trained on same signal

Trained on 
different signal

CWoLa (learns 
about signal in 
data)



• Full Run 2 (2015-2018) (139 fb-1)
• Lowest unprescaled large-R jet trigger (offline pT>500 GeV)

- Trimmed large R jets, combined jet mass - m1,m2

• Selection:
- Two jets, pT>200 GeV; leading jet pT>500 GeV
- m2 > 30 GeV; m1 < 500 GeV (limit learning differences in tails)

55

Details

ΔR ~ 2m/pT

[19,20]



• Cut on difference in rapidity (|y1-y2| < 1.2)
- Reduce QCD t-channel processes
- Same as VVJJ, inclusive dijet
- Inverted rapidity cut regime serves as data validation region

• Signals: Wʹ→WZ, variable W,Z masses

56

Rapidity Cut

mJJ = 3.62 TeV; |y1-y2| = 0.24 mJJ = 4.23 TeV; |y1-y2| = 2.08 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-31/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2019-03/


• Train network to distinguish between signal and sideband regions
• Network can learn true differences in features between signal and 

sideband regions
- Since learning to distinguish signal region from sidebands, leads to bump!

• Decorrelate 1D mJ = {m1,m2} distribution by percentile scaling
- Use empirical distribution function
- 𝚽i(x) = (# of samples in bin i <= x)/(# of samples in bin i)

• Uniform by definition

𝚽i(m) 𝚽2-1(m)

57

Setup - Features

https://en.wikipedia.org/wiki/Empirical_distribution_function


• Decorrelate 1D mJ distribution
• Remaining correlations in 2D m1 vs m2 distribution

- Combine sidebands (weight = 1/N) to further cancel out differences

58

Training vs Sidebands

With Signal (mB = mC = 200 GeV):

Excess! NN should 
learn to target

Vs Upper SidebandVs Lower Sideband Vs Comb. Sidebands



• Parametrized background fit
- Bins: 100 GeV between 1.8 - 8.2 TeV
- 3 fit functions:

- For given signal region, sidebands = signal regions ± 0.5

- Fit to all, finish when fit has χ2 p > 0.05 in sidebands:
• Cycle through fit functions
• Reduce sideband size by 400 GeV; repeat

59

Fit Process

1 2 3



• Coarse scan over injected μ, and train a different NN with each value
- 5 different random samplings of signal

• For the given NN treat μ as a POI in the fit and find a limit
• Expected/observed limits for that μ are mediansamplings(max(CL(μ),μ))
• Median expected limit is min over all μ

- Expected limit bands given as bands for median NN ⨁ variation in median 
expected limit

60

μ Scan Limits



• Overlapping mJJ regions

• Feature and mres decorrelation

• Parametric fitting with large bin counts
• MC validation
• NN training time
• Limit setting 61

Challenges and Remarks



CWoLa Hunting
4

Dijet Resonances

Edited from [1703.01927]

[1506.00962] [1708.04445]

1) Theorist comes up with specific 

model with some specific 

prediction (e.g. W’ → WZ).

2) Choose dedicated substructure 

variables.

3) Simulate signal to optimize cuts

4) Calibrate in some data sample

5) Apply cuts to events and look 

for a bump in the new 

distribution

62

J. Collins, BOOST 2018

A
B

C

https://indico.cern.ch/event/649482/contributions/2993318/


CWoLa Hunting
5

1) Theorist comes up with specific 

model with some specific 

prediction (e.g. W’ → WZ).

2) Choose dedicated substructure 

variables.

3) Simulate signal to optimize cuts

4) Calibrate in some data sample

5) Apply cuts to events and look 

for a bump in the new 

distribution

Dijet Resonances

Edited from [1703.01927]

[1506.00962] [1708.04445]

63

J. Collins, BOOST 2018

https://indico.cern.ch/event/649482/contributions/2993318/
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

Solution: Train 
directly on data using 

mixed samples

CWoLa
Classification 

Without Labels

E. Metodiev, BPN, J. Thaler, JHEP 10 (2017) 5164

B. Nachman, BOOST 2018

https://indico.cern.ch/event/649482/contributions/2993322/
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Solution: Train directly on data using 
mixed samples
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B. Nachman, BOOST 2018

https://indico.cern.ch/event/649482/contributions/2993322/


CWoLa Hunting
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CwoLa Hunting: Basic Picture

Cut based on
NN output

67

J. Collins, BOOST 2018

A

C

B

https://indico.cern.ch/event/649482/contributions/2993318/


• Exclusion limit illustrative example:
• Injected signal with strength nS = L*σ*BR (set limits on this quantity)

68

Statistical Analysis Details

nS = 1000

nS = 750

nS = 500

ϵ = 1.0

ϵ = 0.1

ϵ = 1.0

ϵ = 1.0

ϵ = 0.1

ϵ = 0.1

ϵ = 0.25

ϵ = 0.25

ϵ = 0.25

Fitting
Code

μ = 1.0

μ = 1.33

μ = 2.0

μ = 0.5

μ = 0.33

μ = 1.0

μ = 0.8

μ = 4.0

μ = 6.0

Inject 
Signal

Train 
NN

Apply 
NN Cuts

Fit to Signal + 
Background

Find 95% 
CL Limits

nS = 1000 was already at limit
Apply NN -> improve limit to μ<1
If μ<1, NN would be different
-> Not reliable result
nS = 750 was less than limit
Apply NN -> improve limit to μ=1!
Can’t use μ<1 result

nS = 500 was less than limit
Too small signal for NN to learn!
Limit not improved
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CwoLa Hunting: Basic Picture

69

J. Collins, BOOST 2018

https://indico.cern.ch/event/649482/contributions/2993318/


CWoLa Hunting
19

Application to Bump Hunt

In signal region:
S = 522,
S/B = 0.64%

2σ

3.8σ

4.2σ

7σ

70

J. Collins, BOOST 2018

Measure n-pronginess of jet

https://indico.cern.ch/event/649482/contributions/2993318/


CWoLa Hunting
20

No Signal → No Bump!

(Need to be careful to make this work. Details in backup slides and in paper)

71

J. Collins, BOOST 2018

https://indico.cern.ch/event/649482/contributions/2993318/


CWoLa Hunting
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Mass Scan

72

J. Collins, BOOST 2018
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• Proposal for CWoLa Hunting in ATLAS
- Generic – Sensitive to a broad class of familiar and exotic models
- Data-driven – Training and testing done directly on data
- Resonance search – Search requires a resonance in final state
- Machine learning – Method can learn to tag signal (if it exists) from basic 

features, even if specific signature of signal is unknown in advance

Assumptions of CWoLa Hunting
1. Need some variable X (e.g. m_JJ) in which background is smooth 

and signal is localized
2. Need some other variables {Y} (e.g. jet substructure) which may 

provide discriminating power which may be a-priori unknown
3. Any cuts on {Y} should leave background smooth in X
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Summary



• Two sets of results, depending on features used in training
• Using all features, provide model-independent information - p-values 

according to background-only hypothesis
- No dip: Data is well-described by background-only hypothesis
- Dip observed: Useful information for experimentalists and theorists

• Detailed study of features tagging events in the bump
• E: Can be used as an “alarm system” for a dedicated search in Run 3
• T: Can publish neural network so theorists can devise models that would 

be tagged by these features
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Limits from CWoLa Hunting
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• Two sets of results, depending on features used in training
• Using reduced feature set (Yi = {mJ}), provide model-dependent

information – limits on A->BC generic narrow resonance
- Inject signal to compare B and S+B
- Smart way of doing 3D bump hunt

• Currently no dedicated 3D bump hunt in ATLAS -> new result
- Can set proper limits because uncertainties available on jet mass
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Limits from CWoLa Hunting
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Sculpting Background: Overtraining

CWoLa Hunting
12

Nested Cross-Validation
J. Collins, BOOST 2018
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