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Changed topic

The benefits of rooting

They are obvious to any connoisseur · · ·
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The benefits of rooting

· · · as illustrated by

With some skill, this leads to · · ·
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The benefits of rooting

But back to my original topic: Wilson fermions in the ǫ regime
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Outline

Wilson chiral perturbation theory

Wilson random matrix theory

Index of the Wilson-Dirac operator

Gauge ensembles

Index and topological charge

Wilson eigenvalues and WRMT

Clover eigenvalues and WRMT

Summary

with Poul Damgaard and Kim Splittorff,
Phys. Rev. D85 (2012) 014505 [arXiv:1110.2851];
Phys. Rev. D86 (2012) 034503 [arXiv:1206.4786].
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Wilson chiral perturbation theory

At low energy, the leading fermion discretization effects can be
included in χPT by considering a modified chiral Lagrangian

L =
f2

8
Tr
(

∂µU∂µU
†
)

−
1

2
mΣTr

(

U + U †
)

+ a2V .

V describes the chiral symmetry breaking terms applicable to
Wilson fermions. In the ǫ-regime, and with the power counting

m ∼ a2, we have (Sharpe & Singleton)

V =W8Tr
(

U2 + U †2
)

+W6

[

Tr
(

U + U †
)]2

+W7

[

Tr
(

U − U †
)]2

.

The two-trace terms with low-energy constants W6 and W7 are
suppressed at large Nc.

In the ǫ-regime of χPT the zero momentum modes dominate and
the first term in L can be neglected.
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Wilson random matrix theory

The ǫ-regime can equivalently be described by a chiral random
matrix theory, with the Dirac operator, including the one-trace
term with low-energy constants W8, represented as

DW =

(

ãA iW

iW † ãB

)

with W a random (n+ ν)× n complex matrix, and A and B
random Hermitian matrices of size (n+ ν)× (n+ ν) and n× n,
respectively.
This is written in a chiral basis with

γ5 = diag(1, . . . , 1,−1, . . . ,−1) ,

and A and B represent the chiral symmetry breaking term
corresponding to the Wilson term in the Wilson-Dirac operator.
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Wilson RMT

With WχPT Akemann, Damgaard, Splittorff and Verbaarschot
have worked out the eigenvalue distribution of the Hermitian
Wilson Dirac operator HW or the RMT equivalent HW

HW = γ5 (DW +m0) , HW = γ5 (DW + m̃)

with

m̂ = mΣV = 2m̃n and â28 = a2W8V =
1

2
ã2n

held fixed. The eigenvalues are rescaled with ΣV or 2n. m is
related to m0 by a suitable subtraction.

For more details see G. Akemann et al., Phys. Rev. D83 (2011)
085014 [arXiv:1012.0752].

G. Akemann and T. Nagao, JHEP 10 (2011) 060
[arXiv:1108.3035], reproduced the results directly from WRMT.
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Inclusion of the two-trace terms

It is useful to introduce a ψ̄γ5ψ term into the chiral Lagrangian

∆L = −
1

2
zΣTr

(

U − U †
)

.

With ẑ = zΣV , the two-trace terms can be incorporated via two

Gaussian integrations (âj = a2WjV for j = 6, 7, 8)

Zν(m̂, ẑ; â6, â7, â8) =

1

16πâ6â7

∫ ∞

−∞

dy6dy7e
−

y26

16â2
6

−
y27

16â2
7 Zν(m̂− y6, ẑ− y7; 0, 0, â8) .

Here,

Zν(m̂, ẑ; 0, 0, â8) =

∫

dU det νUe−V(L+∆L)

is the fixed-index partition function with the one-trace O(a2) term
included.
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Index of the Wilson-Dirac operator

RMT predictions are usually given for a gauge field sector with a
particular index (or, in the continuum, topological charge). For
the Wilson-Dirac operator, the index can be defined by

ν ≡
∑

k

′
sign(〈k|γ5|k〉)

with |k〉 the k’th eigenstate of the Wilson-Dirac operator. Only
eigenvectors with real eigenvalues contribute, and the ′ indicates
that only the real eigenvalues in the branch near zero, with
eigenvalues < rcut, are kept. Using

HW (m0)|ψ〉 = 0 ⇒ DW |ψ〉 = −m0|ψ〉

the index can equivalently be obtained from the zero crossings
of the spectral flow of HW (m0) to mcut = −rcut. It corresponds to

the index of an overlap operator with kernel HW (mcut).
The index is not unique, but depends on the choice of rcut.
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Gauge ensembles

For our test in the quenched case, we generated three
ensembles using the Iwasaki gauge action, which suppresses
dislocations, and gives a fairly unique index (topol. charge Q).

βIw r0/a a [fm] size L [fm] cfgs ν = 0, 1, -1

2.635 5.37 0.093 164 1.5 6500 1246, 1088, 1045

2.635 5.37 0.093 204 1.9 3000 379, 319, 322

2.79 6.70 0.075 204 1.5 6000 1172, 990, 988

Q is measured with 6 HYP steps and the “Boulder” FF̃ :
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Index and topological charge

On the configurations with “Boulder charge” Q = −1, 0 and 1, we
did the expensive measurement of the index with rcut = 1.
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Index and topological charge

For all our tests of WχPT (WRMT) discussed here, we did one
HYP smearing of the gauge fields, before constructing the
Wilson-Dirac operator. The HYP smearing smooths the gauge
fields and further suppresses dislocations.

For only 1.3%, 2.9% and 0.1% configs did the index ν with
rcut = 1 differ from the “Boulder charge” Q.

The good agreement between “Boulder charge Q” and Wilson
index ν supports our choices in gauge action and
implementation of the Wilson-Dirac operator.

Changing rcut to as low as 0.5 would not affect the agreement
much.
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Index and topological charge

On the same configs, with a clover-improved (cSW = 1.0) Dirac
operator – again with one HYP smearing, so that the tree-level
cSW is close to the nonperturbative value –

Multiple zero crossings become rarer, and the crossing modes
(topological modes) more chiral: the slope at the crossing, which
is equal to the chirality, is close to ±1.

With clover improvement the “Boulder charge” Q and the index

differed on 3.1% of the βIw = 2.635 164 cfgs.
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Index and topological charge

We show the distribution of the real eigenvalues for the |Q| = 1
configs of the two ensembles with L = 1.5 fm (left, with estimates
of −mcrit) and the impact of clover improvement (right):
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Some real eigenvalues are smaller than −mcrit (on “exceptional
configs”).

Clover improvement decreases the additive mass
renormalization and makes the distribution of the real
eigenvalues narrower and more symmetric.
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Wilson eigenvalues and WRMT

We computed the lowest (in magnitude) 20 eigenvalues of
HW (m0) for:

Ens βIw r0/a a [fm] size L [fm] |Q| = 0, 1, 2 cfgs

A 2.635 5.37 0.093 164 1.5 1276, 2257, 1518

B 2.635 5.37 0.093 204 1.9 379, 641, 610

C 2.79 6.70 0.075 204 1.5 1202, 2128, 1408

For ensembles A and B we used am0 = −0.216, and for
ensemble C, am0 = −0.178 and −0.184.

We used the ν = 0 histogrammed distribution of ensemble A and
of ensemble C with am0 = −0.184 to obtain the WRMT
parameters â = â8 and m̂, and the eigenvalue rescaling factor
ΣV so that WRMT “fits” the distribution “well.”

Using the same parameter values, WRMT then predicts the
|ν| = 1 distribution that can be compared with the measured one.
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Volume scaling – ensembles A and B
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Use volume scaling, âB = âA
√

VB/VA and m̂B = m̂A(VB/VA):

-12 -8 -4 0 4 8 12

λ5

0

0.1

0.2

0.3

0.4

0.5

0.6

ρ 5ν=
0 (λ

5 ,m
;a

)

Ev_2635_20_HYP_Q0_m216
m=8.5 a=0.55  ν=0
PREDICTION

-12 -8 -4 0 4 8 12

λ5

0

0.1

0.2

0.3

0.4

0.5

0.6

ρ 5ν=
1 (λ

5 ,m
,a

)

Ev_2635_20_HYP_Q1_Qm1_m216
m=8.5 a=0.55 ν=1
PREDICTION

Wilson fermions ..., BNL, Sep 5, 2014. U.M. Heller – p. 17/23



Mass scaling – ensemble C
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Use mass scaling, i.e., adjust m̂ by ∆m̂ = ∆m0ΣV :
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Wilson eigenvalues and WRMT

We can also compare for |Q| = 2 (|ν| = 2, but not from flow) for

ensemble C, the finer lattice spacing.
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Despite use of smearing and fairly small a, the lattice artifacts
are quite substantial, and higher order terms are important, e.g.,

to explain the asymmetry in the distribution of the real
eigenvalues.

A similar study was done by Deuzeman, Wenger and Wuilloud,
JHEP 1112, 109 (2011) [arXiv:1110.4002].
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Clover eigenvalues and WRMT

Use clover term, and determine WRMT parameters from ν = 1
distribution, for ensemble A:
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Clover eigenvalues and WRMT

Lattice effects are much smaller – âj decreased by about a

factor 3 - 4.

Lattice effects affect mostly the “topological peak,” the
delta-function peak in the continuum at λ5 = m from the
zeromodes of the massless Dirac operator.

For small âj , W6 and W7 contribute as |W6 +W7|. They smear

out the delta-function peak, as does W8.

For ν > 1, W8, as part of the WRMT Dirac operator, induces
level repulsion in the topological peak. W6 does not, so we can
differentiate the contributions: W6 describes the observed
distribution.
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Clover eigenvalues and WRMT

This is confirmed at smaller a, ensemble C:
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Summary

Like χPT before, RMT has been recently extended to
include lattice effects for (staggered and) Wilson fermions.

We have used eigenvalues of the Hermitian Wilson-Dirac
operator to test predictions of WRMT, or ǫ-regime WχPT.

For the Wilson-Dirac operator with one HYP smearing, we
find nice agreement of the predicted low-lying eigenvalue
distributions and the measured ones.

Parameters obtained from the distribution of one ν-sector
give predictions for other ν-sectors that work well.

Volume and mass scaling of the WRMT parameters holds.

Clover improvement makes the lattice effects much smaller,
and allows to distinguish between W8 and W6.

The combination of smearing and O(a) improvement is

important to decrease the lattice artifacts.
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