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Some General Remarks and Reminiscences

It is quite fitting to honor Mike Creutz, one of the great pioneers of lattice gauge
theory.

In 1979, by a brilliant use of Monte Carlo simulations, Mike showed confinement for
asymptotically free non-abelian Yang-Mills gauge theories, and measured the string ten-
sion, demonstrating that it obeyed asymptotic scaling. This work also showed how Wil-
son’s 1974 proof of the area-law behavior of the Wilson loop at strong bare coupling (i.e.,
small β = 2Nc/g

2
0) extends to the continuum limit and hence describes actual contin-

uum physics, in, e.g., Creutz, “Monte Carlo Study of Quantized SU(2) Gauge Theory”
(Oct. 1979), Phys. Rev. D21, 2308 (1980); Creutz, “Asymptotic Freedom Scales”,
Phys. Rev. Lett. 45, 313 (1980)...)

This work by Mike is crucial for our understanding of confinement in QCD.

Wilson’s proof of area-law behavior also applied for abelian gauge theories, so it was
necessary to show that one could not analytically continue this to the continuum limit at
β → ∞ to be consistent with deconfinement of a U(1) gauge theory like QED. Mike
also did this, demonstrating evidence for non-analytic behavior in the average plaquette
for U(1) gauge theory in Creutz, “Confinement and the Critical Dimensionality of Space-
Time” (May, 1979), Phys. Rev. Lett. 43, 53 (1979).



With Jacobs and Rebbi, Mike did pioneering lattice simulations of theories with cou-
pled gauge and scalar fields, in Creutz, Jacobs, and Rebbi, “Experiments with a Gauge-
Invariant Ising System” (Mar. 1979), Phys. Rev. Lett. 42, 1390 (1979); Creutz, “Phase
Diagrams for Coupled Spin-Gauge Systems” (Aug. 1979), Phys. Rev. D21, 1006 (1980).

Mike had been working on lattice gauge theory several years before the great 1979
breakthrough, with papers dating back to 1976, as well as work on hadron bag models.

I vividly remember the great excitement in 1979 with these breakthroughs. On visits
from Stony Brook to Brookhaven I would talk to Mike about this work, which combined
the power of Monte Carlo simulations with analytic checks to demonstrate that the results
applied to the continuum limit and were not artifacts due to finite lattice spacing or finite
lattice volume. Mike’s work has stood the test of time.

Mike built on these very important achievements in 1979-1980 with many valuable
subsequent contributions, as discussed by speakers here. He richly deserved the Rahman
Prize for Computational Physics which was awarded to him in 2000, as well as other the
awards that he has received.

Mike himself has given a brief history of this heroic period, e.g., at Lattice-2000 (in
Bangalore), “Lattice Gauge Theory - a Retrospective”, hep-lat/0010047.



In the nearly 40 years that I have known Mike, I have always been very impressed not
only by his profoundly important insights and contributions to particle physics, but also
by his remarkable friendliness, openness, and modesty.

Lattice gauge theory now provides the most precise quantitative understanding of the
hadron spectrum of QCD, as well as other properties, e.g., hadronic matrix elements,
finite-temperature behavior, etc. The use of numerical importance-sampling methods
revolutionized the study of QCD.

Mike’s 1983 review with Jacobs and Rebbi in Physics Reports, and Mike’s 1983 book,
“Quarks, Gluons, and Lattices” have been of great pedagogical value. Since that time,
when I have taught courses on lattice field theory and general particle theory, always
including a unit on lattice field theory, I have made use of these, together with other
reviews such as those of John Kogut. Although many further advances have been made
in the last 30 years, Mike’s reviews are still quite valuable.

Mike’s work not only had a great influence on the particle physics community in general;
it also had a strong influence on my own career. In the 1979-1980 period I was working
mainly in flavor, electroweak, and neutrino physics, but I later spent a number of years
on research in lattice field theory.



Some of my lattice work involved collaborations with I-Hsiu Lee, Junko Shigemitsu,
Sinya Aoki, Nucu Stamatescu, and others. Several of the papers with I-Hsiu and Sinya
were written while they were postdocs at Brookhaven (and, for Sinya, later also at Stony
Brook). Some of this work included studies of lattice gauge-Higgs theories and lattice
Yukawa models. These bring back many good memories.

In 1992, Mike got together a number of us to write review articles on this work for a
book he edited, “Quantum Fields on the Computer”.

Mike has contributed to many other areas, including statistical mechanics.

Among Mike’s many contributions, a major one has been on confinement in QCD. Fol-
lowing this work, one is naturally led to inquire how the IR properties of an asymptotically
free non-abelian gauge theory change as one increases the content of fermions in various
representations.

For sufficiently many fermions, there is good evidence that these theories are deconfined
(at zero temperature) with no spontaneous chiral symmetry breaking. This is an area of
considerable activity, both in continuum calculations and lattice simulations at present.
We proceed to discuss some of our recent results in this area.



RG Flow from UV to IR; Types of IR Behavior and Role
of IR Fixed Point

Consider an asymptotically free, vectorial gauge theory with gauge group G and Nf

massless fermions in representation R of G.

Asymptotic freedom ⇒ theory is weakly coupled, properties are perturbatively
calculable for large Euclidean momentum scale µ in deep ultraviolet (UV).

The question of how this theory flows from large µ in the UV to small µ in the infrared
(IR) is of fundamental field-theoretic interest.

For some fermion contents, the theory may have an exact or approximate IR fixed point
(zero of β).

Denote running gauge coupling at scale µ as g = g(µ), and let

α(µ) =
g(µ)2

4π
, a(µ) =

g(µ)2

16π2



The dependence of α(µ) on µ is described by the renormalization group β function

βα ≡
dα

dt
= −2α

∞
∑

ℓ=1

bℓ a
ℓ = −2α

∞
∑

ℓ=1

b̄ℓα
ℓ ,

where t = lnµ, ℓ = loop order of the coeff. bℓ, and b̄ℓ = bℓ/(4π)ℓ.

Coefficients b1 and b2 in β are independent of regularization/renormalization scheme,
while bℓ for ℓ ≥ 3 are scheme-dependent.

Asymptotic freedom means b1 > 0, so β < 0 for small α(µ), in neighborhood of UV
fixed point (UVFP) at α = 0.

As the scale µ decreases from large values, α(µ) increases. Denote αcr (depending on
G and R) as minimum value for formation of bilinear fermion condensates and
resultant spontaneous chiral symmetry breaking (SχSB).



Two generic possibilities for β and resultant UV to IR flow:

• β has no IR zero, so as µ decreases, α(µ) increases, eventually beyond the
perturbatively calculable region. This is the case for QCD.

• β has a IR zero, αIR, so as µ decreases, α → αIR. In this class of theories, there
are two further generic possibilities: αIR < αcr or αIR > αcr.

If αIR < αcr, the zero of β at αIR is an exact IR fixed point (IRFP) of the renorm.
group (RG); as µ → 0 and α → αIR, β → β(αIR) = 0, and the theory becomes
exactly scale-invariant with nontrivial anomalous dimensions (Caswell, Banks-Zaks).
There is no spontaneous chiral symmetry breaking, and in the IR the theory is expected
to be in a deconfined, non-abelian Coulomb phase.

If β has no IR zero, or an IR zero at αIR > αcr, then as µ decreases through a scale
Λ, α(µ) exceeds αcr and SχSB occurs, so fermions gain dynamical masses ∼ Λ and
are integrated out of the low-energy effective field theory applicable for µ < Λ. In this
case, αIR is only approx. IRFP of RG.



If αIR is only slightly greater than αcr, then, as α(µ) approaches αIR, since
β = dα/dt → 0, α(µ) varies very slowly as a function of the scale µ, i.e., there is
approximately scale-invariant (= dilatation-invariant) behavior.

SχSB at Λ also breaks the approx. dilatation symmetry, leading to a resultant approx.
Nambu-Goldstone boson, the dilaton. This is not massless, since β(αcr) is nonzero.

Denote the n-loop β fn. as βnℓ and the IR zero of βnℓ as αIR,nℓ.

At the n = 2 loop level,

αIR,2ℓ = −
4πb1

b2

which is physical for b2 < 0. One-loop coefficient b1 (Gross-Wilczek, Politzer,’t Hooft)
is

b1 =
1

3
(11CA − 4NfTf)

where CA ≡ C2(G) is quadratic Casimir invariant, Tf ≡ T (R) is trace invariant.
Focus here on G = SU(Nc).



Asymptotic freedom requires Nf < Nf,b1z, where

Nf,b1z =
11CA

4Tf

e.g., for R = fundamental rep., Nf < (11/2)Nc.

Two-loop coeff. b2 is (Caswell, Jones)

b2 =
1

3

[

34C2
A − 4(5CA + 3Cf)Nf Tf

]

where Cf ≡ C2(R).

b2 is positive for small Nf but decreases as fn. of Nf and vanishes with sign reversal
at Nf = Nf,b2z, where

Nf,b2z =
34C2

A

4Tf(5CA + 3Cf)

For arbitrary G and R, Nf,b2z < Nf,b1z, so there is always an interval in Nf for
which β has an IR zero, namely

I : Nf,b2z < Nf < Nf,b1z



• for SU(2), I: 5.55 < Nf < 11

• for SU(3), I: 8.05 < Nf < 16.5

• As Nc → ∞, I: 2.62Nc < Nf < 5.5Nc.

(expressions given for Nf ∈ R; of course, physical values of Nf are nonnegative
integers)

As Nf decreases from the upper to lower end of interval I, αIR increases. Denote

Nf = Nf,cr at αIR = αcr

Nf,cr separates the (zero-temp.) chirally symmetric and broken IR phases. Old
estimate from approx. sol. of Schwinger-Dyson eq. for fermion propagator in SU(Nc):
Nf,cr ∼ 4Nc.

As Nf approaches Nf,cr, α grows to O(1) as theory becomes more strongly coupled.



Higher-Loop Corrections to UV → IR Evolution of Gauge
Theories

Because of the moderately strongly coupled physics, one should calculate the IR zero in
β, αIR, and resultant value of γm evaluated at αIR, to higher-loop order. We have
done this for arbitrary G and R, in Ryttov and Shrock, PRD83, 056011 (2011)
[arXiv:1011.4542] (see also Pica and Sannino, PRD83, 035013 (2011)
[arXiv:1011.5917]; results agree).

Although coeffs. in β at ℓ ≥ 3 loop order are scheme-dependent, results give a
measure of accuracy of the 2-loop calc. of the IR zero of β, and similarly with γm
evaluated at this IR zero.

Make use of calculation of β and γm up to 4-loops in MS scheme by Vermaseren,
Larin, and van Ritbergen.

The value of higher-loop calculations has been amply shown in comparison of QCD
predictions with experimental data, e.g., in MS scheme. These are for α near the
UVFP at α = 0; here we study an IRFP away from α = 0.



3-loop coefficient in β function (in MS scheme):

b3 =
2857

54
C3
A + TfNf

[

2C2
f −

205

9
CACf −

1415

27
C2
A

]

+(TfNf)
2

[

44

9
Cf +

158

27
CA

]

Here, b3 < 0 for Nf ∈ I. Since β3ℓ = −[α2/(2π)](b1 + b2a+ b3a
2), it follows

that β3ℓ = 0 away from α = 0 at two values:

α =
2π

b3

(

− b2 ±
√

b2
2 − 4b1b3

)

Since b2 < 0 and b3 < 0, can rewrite as

α =
2π

|b3|

(

− |b2| ∓
√

b2
2 + 4b1|b3|

)

Soln. with − sqrt is negative, hence unphysical; soln. with + sqrt is αIR,3ℓ.



We showed analytically and numerically that the value of the IR zero decreases when
calculated at the 3-loop level, i.e.,

αIR,3ℓ < αIR,2ℓ

In RS, Phys. Rev. D 87, 105005 (2013) [arXiv:1301.3209] we generalized this. If a
scheme had b3 > 0 in I, then, since b2 → 0 at lower end of I, b2

2 − 4b1b3 < 0, so
this scheme would not have a physical αIR,3ℓ in this region.

Since the existence of the IR zero in β at 2-loop level is scheme-independent, one may
require that a scheme should maintain this property to higher-loop order, and hence
that b3 < 0 for Nf ∈ I.

With b3 < 0, we proved that the inequality αIR,3ℓ < αIR,2ℓ holds in general.

We have given an analysis of the zeros of the four-loop beta function, β4ℓ, in a general
scheme. With MS, from 3- to 4-loop level, slight increase: αIR,4ℓ >∼ αIR,3ℓ; small
change, so overall, αIR,4ℓ < αIR,2ℓ.

Our result of smaller fractional change in value of IR zero of β at higher-loop order
agrees with expectation that calc. to higher loop order should give more stable result.



Numerical values of αIR,nℓ at the n = 2, 3, 4 loop level for SU(2), SU(3) and Nf

fermions in fund. rep.

Nc Nf αIR,2ℓ αIR,3ℓ αIR,4ℓ
2 6 11.42 1.645 2.395
2 7 2.83 1.05 1.21
2 8 1.26 0.688 0.760
2 9 0.595 0.418 0.444
2 10 0.231 0.196 0.200

3 10 2.21 0.764 0.815
3 11 1.23 0.578 0.626
3 12 0.754 0.435 0.470
3 13 0.468 0.317 0.337
3 14 0.278 0.215 0.224
3 15 0.143 0.123 0.126
3 16 0.0416 0.0397 0.0398

(Perturbative calc. not applicable if αIR,nℓ too large.) We also performed the
corresponding higher-loop calculations for SU(Nc) gauge theories with Nf fermions in
larger representations.



It is of interest to calculate the anomalous dimension γm ≡ γ for the fermion bilinear.

Denote γ calculated to n-loop (nℓ) level as γnℓ and, evaluated at the n-loop value of
the IR zero of β, as

γIR,nℓ ≡ γnℓ at α = αIR,nℓ

In the IR chirally symmetric phase, an all-order calculation of γ evaluated at an
all-order calculation of αIR would be an exact property of the theory.

In the χ bk. phase, just as the IR zero of β is only an approx. IRFP, so also, the γ is
only approx., describing the running of ψ̄ψ and the dynamically generated running
fermion mass near the zero of β having large-momentum behavior
Σ(k) ∼ Λ(Λ/k)2−γ (with γ < 2).

For example, at the two-loop level, we calculate

γIR,2ℓ =
Cf(11CA − 4TfNf)[455C2

A + 99CACf + (180Cf − 248CA)TfNf + 80(TfNf)
2]

12[−17C2
A + 2(5CA + 3Cf)TfNf ]2



Illustrative numerical values of γIR,nℓ for SU(2) and SU(3) at the n = 2, 3, 4 loop
level and Nf fermions in the fundamental representation:

Nc Nf γIR,2ℓ γIR,3ℓ γIR,4ℓ
2 7 (2.67) 0.457 0.0325
2 8 0.752 0.272 0.204
2 9 0.275 0.161 0.157
2 10 0.0910 0.0738 0.0748

3 10 (4.19) 0.647 0.156
3 11 1.61 0.439 0.250
3 12 0.773 0.312 0.253
3 13 0.404 0.220 0.210
3 14 0.212 0.146 0.147
3 15 0.0997 0.0826 0.0836
3 16 0.0272 0.0258 0.0259

Plots of γ as fn. of Nf for SU(2) and SU(3):



Figure 1: n-loop anomalous dimension γIR,nℓ at αIR,nℓ for SU(2) with Nf fermions in fund. rep. (i) blue:

γIR,2ℓ; (ii) red: γIR,3ℓ; (iii) brown: γIR,4ℓ.



Figure 2: n-loop anomalous dimension γIR,nℓ at αIR,nℓ for SU(3) with Nf fermions in fund. rep: (i) blue:

γIR,2ℓ; (ii) red: γIR,3ℓ; (iii) brown: γIR,4ℓ.



A necessary condition for a perturbative calculation to be reliable is that higher-order
contributions do not modify the result too much. We find that the 3-loop and 4-loop
results are closer to each other for a larger range of Nf than the 2-loop and 3-loop
results.

So our higher-loop calcs. of αIR and γ allow us to probe the theory reliably down to
smaller values of Nf and thus stronger couplings, closer to Nf,cr.

We find that, for a given Nc, R, and Nf , the values of γIR,nℓ calculated to 3-loop
and 4-loop order are smaller than the 2-loop value.

We compare these calculations with lattice measurements next.



Some Comparisons with Lattice Measurements

For example, for SU(3) with Nf = 12 fermions in fund. rep., we calculate

γIR,2ℓ = 0.77, γIR,3ℓ = 0.31, γIR,4ℓ = 0.25

some lattice results (N.B.: error estimates do not always include all systematic
uncertainties)

γ = 0.414 ± 0.016 (Appelquist et al. (LSD Collab.), PRD 84, 054501 (2011))

γ ∼ 0.35 (DeGrand, PRD 84, 116901 (2011))

0.2 <∼ γ <∼ 0.4 (Kuti et al. (method-dep.) arXiv:1205.1878, arXiv:1211.3548,
1211.6164)

γ = 0.4 − 0.5 (Y. Aoki et al., (LatKMI) PRD 86, 054506 (2012))

γ = 0.27(3) (Hasenfratz et al., arXiv:1207.7162; γ ≃ 0.25 (Hasenfratz et al.,
arXiv:1310.1124).



So here the 2-loop value is larger than, and the 3-loop and 4-loop values closer to,
these lattice measurements.

Thus, as expected, our higher-loop calculations of γ yield better agreement with these
lattice measurements than two-loop calculations.

For lower Nf , αIR is larger and γm can also be larger. For sufficiently small Nf the
coupling becomes too large for perturbative methods to be reliable.

N.B.: for some theories with given gauge group G and fermion content, there is not yet
a consensus as to whether the theory is chirally symmetric or chirally broken in the IR;
e.g., for SU(3), Nf = 12, Appelquist et al. (LSD); Deuzeman et al; Hasenfratz et al.;
DeGrand et al.; Y. Aoki et al. find IR-χ sym. while Jin and Mawhinney and Kuti et al.
find SχSB.

We have also performed calculations for higher-dimensional representations, e.g.:



SU(Nc) with Nf fermions in symmetric rank-2 (S2) tensor representation - we find:

Nc Nf γIR,2ℓ,S2 γIR,3ℓ,S2 γIR,4ℓ,S2

3 2 (2.44) 1.28 1.12
3 3 0.144 0.133 0.133
4 2 (4.82) (2.08) 1.79
4 3 0.381 0.313 0.315

Some lattice results for Nf = 2 fermions in symmetric rank-2 tensor rep.:

e.g., SU(3) (sextet rep.), Nf = 2

γ <∼ 0.45 (Degrand, Shamir, Svetitsky, arXiv:1201.0935, find IR-conformality)

γ ∼ 1.5 (Kuti et al., arXiv:1205.1878, PTP, find SχSB)

Also phase structure studies by Kogut, Sinclair.



Further Higher-Loop Structural Properties of β

In addition to αIR,nℓ, further interesting structural properties of the n-loop beta fn.
βnℓ include

• the derivative β′
IR,nℓ ≡ dβnℓ

dα
evaluated at αIR,nℓ.

• the magnitude and location of the minimum in βnℓ

In quasi-scale-invariant case where αIR >∼ αcr, dilaton mass depends on how small β
is for α near to αIR and hence, at n-loop order, on β′

IR,nℓ, via the series expansion of
βnℓ around αIR,nℓ,

βnℓ(α) = β′
IR,nℓ (α− αIR,nℓ) + O

(

(α− αIR,nℓ)
2
)

We have calculated these structural properties analytically and numerically in RS, Phys.
Rev. D87, 105005 (2013) [arXiv:1301.3209].



We prove a general inequality: for a given gauge group G, fermion rep. R, and
Nf ∈ I (in a scheme with b3 < 0, which thus preserves the existence of the 2-loop IR
zero in β at 3-loop level),

β′
IR,3ℓ < β′

IR,2ℓ

We carry out a similar analysis of the derivative of the 4-loop β function evaluated at
αIR,4ℓ, denoted β′

IR,4ℓ, and find a similar decrease from 3-loop to 4-loop order. Some
numerical values:



Nc Nf β′
IR,2ℓ β′

IR,3ℓ β′
IR,4ℓ

2 7 1.20 0.728 0.677
2 8 0.400 0.318 0.300
2 9 0.126 0.115 0.110
2 10 0.0245 0.0239 0.0235

3 10 1.52 0.872 0.853
3 11 0.720 0.517 0.498
3 12 0.360 0.2955 0.282
3 13 0.174 0.156 0.149
3 14 0.0737 0.0699 0.0678
3 15 0.0227 0.0223 0.0220
3 16 0.00221 0.00220 0.00220

Illustrative figures for SU(2) with Nf = 8 fermions and SU(3) with Nf = 12
fermions:
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Figure 3: βnℓ for SU(2), Nf = 8, at n = 2, 3, 4 loops. From bottom to top, curves are β2ℓ, β4ℓ, β3ℓ.
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Figure 4: βnℓ for SU(3), Nf = 12, at n = 2, 3, 4 loops. From bottom to top, curves are β2ℓ, β4ℓ, β3ℓ.



Interesting property: for R = fund. rep., αIR,nℓNc, γIR,nℓ, and other structural
properties of βnℓ are similar in theories with different values of Nc and Nf if they have
equal or similar values of

r ≡
Nf

Nc

This motivates a study of the UV to IR evolution of an SU(Nc) gauge theory with Nf

fermions in the fundamental rep. in the ’t Hooft-Veneziano limit Nc → ∞,
Nf → ∞ with r fixed and α(µ)Nc ≡ ξ(µ) independent of Nc.

We have carried out this study in RS, Phys. Rev. D87, 116007 (2013)
[arXiv:1302.5434].

We show that the approach to this limit is quite rapid, with leading correction terms
suppressed by 1/N 2

c . For example, at the two-loop level, the IRFP is

ξIR,2ℓ =
4π(11 − 2r)

13r − 34
+

12πr(11 − 2r)

(34 − 13r)2N 2
c

+ O
( 1

N 4
c

)



and the anomalous dimension is

γ
IR,2ℓ

=
(11 − 2r)(1009 − 158r + 40r2)

12(13r − 34)2

+
(11 − 2r)(18836 − 5331r + 648r2 − 140r3)

(13r − 34)3N 2
c

+ O
( 1

N 4
c

)

These results provide an understanding of the approximate universality that is exhibited
in calculations of these quantities for different (finite) values of Nc and Nf with similar
or identical values of r.



Study of Scheme Dependence in Calculation of IR Fixed
Point

Since coeffs. bn in βnℓ, and hence also αIR,nℓ, are scheme-dependent for n ≥ 3, it is
important to assess the effects of this scheme dependence. We have studied this in RS,
Phys. Rev. D88, 036003 (2013) [arXiv:1305.6524] and RS, Phys. Rev. D90, 045011
(2014) [arXiv:1405.6244], extending our earlier work in Ryttov and RS, PRD 86,
065032 (2012) [arXiv:1206.2366] and PRD 86, 085005 (2012) [arXiv:1206.6895].

A scheme transformation (ST) is a map between α and α′ or equivalently, a and a′,
where a = α/(4π) of the form

a = a′f(a′)

with f(0) = 1 since for α = 0, a ST has no effect. Write

f(a′) = 1 +

smax
∑

s=1

ks(a
′)s = 1 +

smax
∑

s=1

k̄s(α
′)s ,

where k̄s = ks/(4π)s, and smax may be finite or infinite. Jacobian
J = da/da′ = dα/dα′.

We calculate the coefficients in the transformed scheme. In addition to the well-known
results b′

1 = b1 and b′
2 = b2, we find



b′
3 = b3 + k1b2 + (k2

1 − k2)b1 ,

b′
4 = b4 + 2k1b3 + k2

1b2 + (−2k3
1 + 4k1k2 − 2k3)b1

b′
5 = b5 + 3k1b4 + (2k2

1 + k2)b3 + (−k3
1 + 3k1k2 − k3)b2

+(4k4
1 − 11k2

1k2 + 6k1k3 + 4k2
2 − 3k4)b1

etc. at higher-loop order.

A physically acceptable scheme transformation must satisfy several conditions:

•C1: it should map a (real positive) α to a real positive α′

•C2: it should map a moderate value of α, where perturbation theory is applicable,
to a value of α′ that is not too large.

•C3: it must have a nonzero Jacobian to be invertible.

•C4: Existence of an IR zero of β is a scheme-independent property, so if it is
present in one scheme, it should also be present in the transformed scheme.



These conditions are easily satisfied when one applies a scheme transformation to a
fixed point at the origin α = α′ = 0 (UVFP for asymptotically free theory), but they
are not automatic, and can be quite restrictive at an IRFP.

For example, consider the ST (dependent on a parameter r)

a =
tanh(ra′)

r

with inverse

a′ =
1

2r
ln

(

1 + ra

1 − ra

)

This is acceptable for small a, but if a > 1/r, i.e., α > 4π/r, it maps a real α to a
complex α′ and hence is physically unacceptable. For, say, r = 8π, this pathology can
occur at the moderate value α = 0.5.



We have constructed several STs that are acceptable at an IRFP and have studied
scheme dependence of the IR zero of βnℓ using these. For example,

a =
sinh(ra′)

r

with inverse

a′ =
1

r
ln

[

ra+
√

1 + (ra)2
]

We find reasonably small scheme-dependence for moderate αIR.

For example, for Nc = 3, Nf = 12, αIR,2ℓ = 0.754, and:

αIR,3ℓ,MS = 0.435, α′
IR,3ℓ,r=3 = 0.434, α′

IR,3ℓ,r=6 = 0.433,

αIR,4ℓ,MS = 0.470, α′
IR,4ℓ,r=3 = 0.470, α′

IR,4ℓ,r=6 = 0.467,



Since the bn with n ≥ 3 are scheme-dependent, one might expect that it would be
possible, at least in the vicinity of the origin, α = α′ = 0, to construct a scheme
transformation that would set b′

n = 0 for some range of n ≥ 3, and, indeed a ST that
would do this for all n ≥ 3, so that βα′ would consist only of the 1-loop and 2-loop
terms (’t Hooft scheme).

We have constructed an explicit scheme transformation that does this in the vicinity of
the origin, α = α′ = 0, and have also investigated the limited range in α over which
this can be done away from the origin for which the ST is physically acceptable,
satisfying conditions C1-C4.



Other Theories

We have studied UV to IR evolution in asymptotically free supersymmetric gauge
theories with T. Ryttov and in chiral gauge theories with T. Appelquist.

It is also of interest to study RG flows in theories that are IR-free. Early example: exact
solution of the O(N ) nonlinear σ model in d = 2 + ǫ in the large-N limit in W.
Bardeen, B. W. Lee, and RS, Phys. Rev. D14, 985 (1976); E. Brézin and J.
Zinn-Justin, Phys. Rev. B 14, 3110 (1976), yielded the beta function (for small ǫ)

β(λ) = ǫλ
(

1 −
λ

λc

)

where λ is the effective coupling and λc = 2πǫ/N . So this theory has an IRFP at
λ = 0 and a UVFP at λ = λc. This is an example of Weinberg’s notion of
“asymptotic safety”.

There has long been interest in RG properties of d = 4 QED and, more generally, U(1)
gauge theory.

We carried out a study of possible zeros of the beta function for U(1) gauge theory (in
d = 4) up to the five-loop order in RS, Phys. Rev. D89, 045019 (2014)
[arXiv:1311.5268]. We find evidence against a UV zero in this beta function.



Ending Remarks

• Let us celebrate and honor Mike Creutz for his pioneering and crucial contributions
to lattice gauge theory and QCD. It is a privilege to be part of this celebration.

• We hope that Mike will stay around for many more years, as a colleague and friend.

• The study of the UV to IR evolution of an asymptotically free gauge theory with
various fermion contents continues to be of fundamental field-theoretic interest.

• Higher-loop calculations give further information on this UV to IR flow and on
determination of αIR,nℓ and γIR,nℓ.

• These higher-loop calculations improve agreement with lattice measurements.




