# 2-Flavor QCD <br> with Non-degenerate Quark Masses 

## Sinya AOKI

Yukawa Institute for Theoretical Physics, Kyoto University


Creutz Fest 2014
Physics Department, BNL, USA, September 4-5, 2014

## My overlap with Mike Creutz

In 1986, I was in the last year of graduate course@U. of Tokyo. I attended Lat'86@BNL at my own expense. During the meeting, I handed my preprint to Mike and others. No arXiv existed. Tex was just appearing but not used.
Later I applied several postdoc positions including BNL. No email, of course.


In January, 1987, I got a call in my apartment from Mike, offering a pos-doc position@BNL. I accepted it without hesitation. I started my 1st postdoc, in October, 1987 at BNL.

On the first day@BNL, I asked Mike "What should I do as your post-doc ?" He answered "Whatever you would like to do."

Even though I have appreciated Mike's generosity, I had regretted for a long time that I had never collaborated with him in research.

Recently, this situation changes.

This work has been done in collaboration with Mike Creutz.

base on
S.A and M. Creutz, PRL $112(2014) 141603$ (arXiv:1402.1837[hep-lat])

## 1. Introduction

$\theta$ term in QCD

$$
i \theta \frac{1}{32 \pi^{2}} \epsilon^{\mu \nu \alpha \beta} F_{\mu \nu}(x) F_{\alpha \beta}(x) \equiv i \theta q(x)
$$

CP odd

Neutron Electric Dipole Moment(NEDM)
Experimental bound

$$
\left|\overrightarrow{d_{n}}\right| \leq 6.3 \times 10^{-26} e \cdot \mathrm{~cm} \quad \square \quad \theta=\theta_{\mathrm{QCD}}+\theta_{\mathrm{EW}} \leq O\left(10^{-8}\right)
$$

Model estimate

$$
\left|\overrightarrow{d_{n}}\right| / \theta \simeq 10^{-15} \sim 10^{-17} e \cdot \mathrm{~cm}
$$

One possible "solution" $\quad m_{u}=0 \quad$ massless up quark
chiral rotation
$u \rightarrow e^{i \alpha \gamma_{5}} u, \quad \bar{u} \rightarrow \bar{u} e^{i \alpha \gamma_{5}}$,
$m_{u} \bar{u} u \rightarrow m_{u} \bar{u} e^{i 2 \alpha \gamma_{5}} u$
$\theta \rightarrow \theta^{\prime}=\theta+2 \alpha N_{f} \quad$ chiral anomaly
if $m_{u}=0$, we can make
$\theta^{\prime}=0$
by $\alpha=-\frac{\theta}{2 N_{f}}$

Mike Creutz, "Quark masses, the Dashen phase, and gauge field topology" arXiv:1306.1245[hep-lat]

## Mike's Oracles

$$
m_{d}>0 \text { fixed, then }
$$

1. Nothing special happens at $m_{u}=0$.

2. Massless neutral pion: $m_{\pi^{0}}=0$ at $m_{u}={ }^{\exists} m_{c}<0$.
critical quark mass
3. Pion condensation (Dashen phase): $\left\langle\pi^{0}\right\rangle \neq 0$ at $m_{u}<m_{c}<0$.
4. $\chi=\infty$ at $m_{u}=m_{c}$.

$$
\chi=\frac{1}{V}\left\langle Q^{2}\right\rangle \quad \text { topological susceptibility }
$$

5. $\chi=0$ at $m_{u}=0$.?

In this talk, I show the above properties by ChPT including the anomaly effect. In addition, we discuss an interesting prediction related to these in 2-flavor QCD.

## ChPT with "anomaly"

$$
\mathcal{L}=\frac{f^{2}}{2} \operatorname{tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)-\frac{1}{2} \operatorname{tr}\left(M^{\dagger} U+U^{\dagger} M\right)-\frac{\frac{\Delta}{2}\left(\operatorname{det} U+\operatorname{det} U^{\dagger}\right)}{\text { effect of anomaly }}
$$

Note: large N argument by Witten (fundamental rep. for quarks)

$$
\frac{\Delta}{2}\left(\operatorname{det} U+\operatorname{det} U^{\dagger}\right) \quad \square \frac{c}{N}(\log \operatorname{det} U)^{2}
$$

$\mathrm{N}=3$ quark $\quad \mathrm{B}$ fundamental ?
in the large N limit


For simplicity, we use $\frac{\Delta}{2}\left(\operatorname{det} U+\operatorname{det} U^{\dagger}\right) \quad$ but check results with $\quad \frac{c}{N}(\log \operatorname{det} U)^{2}$

## Warm-up: $N_{f}=1$ case

naive guess

$$
m_{\mathrm{PS}}^{2}=\frac{2 B}{f^{2}}\left|m_{0}\right|+\delta m^{2} \quad \text { No massless "pion"(eta) }
$$


correct behavior

$$
U=U_{0}=e^{i \varphi_{0}} . \quad \text { vacuum ansatz }
$$

$$
m=2 B m_{0}
$$

$$
\begin{aligned}
& V\left(\varphi_{0}\right)=-(m+\Delta) \cos \varphi_{0} \quad \varphi_{0}= \begin{cases}0 & m+\Delta>0 \\
\pi & m+\Delta<0\end{cases} \\
& \text { potential } \\
& \text { minimum } \\
& \mathcal{L}=\frac{1}{2} \partial_{\mu} \pi(x) \partial^{\mu} \pi(x)-(m+\Delta) U_{0} \cos (\pi(x) / f) \\
& =\frac{1}{2}\left[\left(\partial_{\mu} \pi(x)\right)^{2}+\frac{|m+\Delta|}{f^{2}} \pi(x)^{2}\right]+O\left(\pi^{4}\right)
\end{aligned}
$$

$\Rightarrow \quad m_{\mathrm{PS}}^{2}=\frac{|m+\Delta|}{f^{2}}$
$m=0$ is note special
non-symmetric under $m \rightarrow-m$ massless PS meson at $m=-\Delta$


## 2. Phase structure and pion masses at $\mathrm{N} \_\mathrm{f}=2$



VEV

$$
\begin{aligned}
\langle\bar{\psi} \psi\rangle & \equiv \frac{1}{2} \operatorname{tr}\left(U_{0}+U_{0}^{\dagger}\right)=2 \cos \left(\varphi_{0}\right) \cos \left(\varphi_{3}\right), & \left\langle\bar{\psi} i \gamma_{5} \psi\right\rangle & \equiv \frac{1}{2 i} \operatorname{tr}\left(U_{0}-U_{0}^{\dagger}\right)=2 \underline{\sin \left(\varphi_{0}\right)} \cos \left(\varphi_{3}\right), \\
\left\langle\bar{\psi} \tau^{3} \psi\right\rangle & \equiv \frac{1}{2} \operatorname{tr} \tau^{3}\left(U_{0}+U_{0}^{\dagger}\right)=-2 \underline{\sin \left(\varphi_{0}\right)} \underline{\sin \left(\varphi_{3}\right),} & \left\langle\bar{\psi} i \gamma_{5} \tau^{3} \psi\right\rangle & \equiv \frac{1}{2 i} \operatorname{tr} \tau^{3}\left(U_{0}-U_{0}^{\dagger}\right)=2 \cos \left(\varphi_{0}\right) \underline{\sin \left(\varphi_{3}\right)} .
\end{aligned}
$$

potential

$$
V\left(\varphi_{0}, \varphi_{3}\right)=-m_{u} \cos \left(\varphi_{0}+\varphi_{3}\right)-m_{d} \cos \left(\varphi_{0}-\varphi_{3}\right)-\Delta \cos \left(2 \varphi_{0}\right)
$$

$$
\begin{aligned}
\frac{\partial V}{\partial \varphi_{0}} & =m_{u} \sin \left(\varphi_{0}+\varphi_{3}\right)+m_{d} \sin \left(\varphi_{0}-\varphi_{3}\right)+2 \Delta \sin \left(2 \varphi_{0}\right)=0 \\
\frac{\partial V}{\partial \varphi_{3}} & =m_{u} \sin \left(\varphi_{0}+\varphi_{3}\right)-m_{d} \sin \left(\varphi_{0}-\varphi_{3}\right)=0
\end{aligned}
$$

gap equations
$\sin \varphi_{0}=\sin \varphi_{3}=0$ is a trivial solution

## Non-trivial Solutions

$0<m_{d}<\Delta$

$$
\begin{aligned}
\sin ^{2}\left(\varphi_{3}\right) & =\frac{\left(m_{d}-m_{u}\right)^{2}\left\{\left(m_{u}+m_{d}\right)^{2} \Delta^{2}-m_{u}^{2} m_{d}^{2}\right\}}{4 m_{u}^{3} m_{d}^{3}} \\
\sin ^{2}\left(\varphi_{0}\right) & =\frac{\left(m_{u}+m_{d}\right)^{2} \Delta^{2}-m_{u}^{2} m_{d}^{2}}{4 m_{u} m_{d} \Delta^{2}}
\end{aligned}
$$

$$
m_{c}^{-}<m_{u}<m_{c}^{+}
$$

Dashen phase
$\Delta<m_{d}$

$$
\begin{aligned}
\sin ^{2}\left(\varphi_{3}\right) & =\frac{\left(m_{d}-m_{u}\right)^{2}\left\{\left(m_{u}+m_{d}\right)^{2} \Delta^{2}-m_{u}^{2} m_{d}^{2}\right\}}{4 m_{u}^{3} m_{d}^{3}} \\
\sin ^{2}\left(\varphi_{0}\right) & =\frac{\left(m_{u}+m_{d}\right)^{2} \Delta^{2}-m_{u}^{2} m_{d}^{2}}{4 m_{u} m_{d} \Delta^{2}}
\end{aligned}
$$

$$
-m_{c}^{-}<m_{u}<m_{c}^{+}
$$

Dashen phase
$U_{0}= \pm\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \quad\left(\quad \sin ^{2}\left(\varphi_{3}\right)=\sin ^{2}\left(\varphi_{0}\right)=1 \quad\right):$

$$
m_{u}<-m_{c}^{-}
$$

$$
m_{c}^{ \pm}=-\frac{m_{d} \Delta}{\Delta \pm m_{d}}<0
$$



$$
\begin{aligned}
& U(x)=U_{0} e^{i \Pi(x) / f}, \quad \Pi(x)=\left(\begin{array}{cc}
\frac{\eta(x)+\pi_{0}(x)}{\sqrt{2}} & \pi_{-}(x) \\
\pi_{+}(x) & \frac{\eta(x)-\pi_{0}(x)}{\sqrt{2}}
\end{array}\right) \\
& \mathcal{L}^{(2)}=\frac{1}{2}\left\{\left(\partial_{\mu} \pi_{0}(x)\right)^{2}+\left(\partial_{\mu} \eta(x)\right)^{2}+2 \partial_{\mu} \pi_{+}(x) \partial^{\mu} \pi_{-}(x)\right\}+\frac{\delta m}{2 f^{2}} \eta^{2}(x) \\
& +\frac{m_{+}(\vec{\varphi})}{4 f^{2}}\left\{\eta^{2}(x)+\pi_{0}^{2}(x)+2 \pi_{+}(x) \pi_{-}(x)\right\}-\frac{m_{-}(\vec{\varphi})}{2 f^{2}} \eta(x) \pi_{0}(x),(26) \\
& \pi_{0}-\eta \text { mixing } \\
& m_{\pi_{ \pm}}^{2}=\frac{m_{+}(\vec{\varphi})}{2 f^{2}} \quad \text { charged pion } \\
& m_{\tilde{\pi}_{0}}^{2}=\frac{1}{2 f^{2}}\left[m_{+}(\vec{\varphi})+\delta m-X\right] \quad \text { neutral pion } \\
& m_{\tilde{\eta}}^{2}=\frac{1}{2 f^{2}}\left[m_{+}(\vec{\varphi})+\delta m+X\right] \text { eta meson } \\
& X=\sqrt{m_{-}(\vec{\varphi})^{2}+\delta m^{2}}, \\
& \begin{aligned}
m_{ \pm}(\vec{\varphi}) & =m_{d} \cos \left(\varphi_{0}-\varphi_{3}\right) \pm m_{u} \cos \left(\varphi_{0}+\varphi_{3}\right) \\
& =m_{ \pm} \cos \left(\varphi_{0}\right) \cos \left(\varphi_{3}\right)+m_{\mp} \sin \left(\varphi_{0}\right) \sin \left(\varphi_{3}\right): \\
\delta m & =2 \Delta \cos \left(2 \varphi_{0}\right) .
\end{aligned} \\
& m_{ \pm}=m_{d} \pm m_{u} .
\end{aligned}
$$



## Anomalous WT identities in N_f=2 ChPT

WT identities

$$
\left\langle\delta_{x} S \mathcal{O}(y)\right\rangle=\delta^{(4)}(x-y)\langle\delta \mathcal{O}(y)\rangle
$$

$$
\begin{aligned}
\delta_{x} S= & i \theta(x)\left[\partial^{\mu} A_{\mu}(x)+\operatorname{tr}\left\{M U^{\dagger}(x)-M^{\dagger} U(x)\right\}-\underline{\left.\Delta\left\{\operatorname{det} U(x)-\operatorname{det} U^{\dagger}(x)\right\}\right]}\right. \\
& A_{\mu}(x)=f^{2} \operatorname{tr}\left\{U^{\dagger}(x) \partial_{\mu} U(x)-U \partial_{\mu} U^{\dagger}(x)\right\} \quad 2 N_{f} q(x): \text { topological charge density }
\end{aligned}
$$

$$
\begin{aligned}
2 N_{f} \chi & =\frac{\frac{\Delta^{2}}{4} \int d^{4} x\left\langle\left\{\operatorname{det} U(x)-\operatorname{det} U^{\dagger}(x)\right\}\left\{\operatorname{det} U(y)-\operatorname{det} U^{\dagger}(y)\right\}\right\rangle}{\frac{\Delta}{2} \underline{\left\langle\operatorname{det} U(y)+\operatorname{det} U^{\dagger}(y)\right\rangle,}} \\
& =-\frac{2 \Delta^{2}}{f^{2}} \int d^{4} x\langle\eta(x) \eta(y)\rangle
\end{aligned}
$$

$$
22 N_{f} \chi=-\frac{4 \Delta^{2} m_{+}(\vec{\varphi})}{m_{+}^{2}(\vec{\varphi})-m_{-}^{2}(\vec{\varphi})+2 m_{+}(\vec{\varphi}) \delta m}+\Delta
$$

$$
\begin{aligned}
& m_{u}=0 \longmapsto m_{+}(\vec{\varphi})=m_{-}(\vec{\varphi})=m_{d} \text { and } \delta m=2 \Delta \\
& 2 N_{f} \chi=-\frac{4 \Delta^{2} m_{d}}{4 m_{d} \Delta}+\Delta=0, \\
& m_{\pi^{0}}^{2}=0 \longmapsto d^{4} x\langle\eta(x) \eta(y)\rangle=\frac{1}{2 X}\left(\frac{X_{-}}{m_{\tilde{\pi}_{0}}^{2}}+\frac{X_{+}}{m_{\tilde{\eta}}^{2}}\right) \rightarrow \infty
\end{aligned}
$$

## 4. An interesting application

$$
\begin{gathered}
m_{u}=-m_{d}=-m \\
\theta=0
\end{gathered}
$$



$$
\begin{gathered}
m_{u}=m_{d}=m \\
\theta=\pi
\end{gathered}
$$

chiral rotations

$$
M=\left(\begin{array}{cc}
-m & 0 \\
0 & m
\end{array}\right) \quad V_{R}=e^{i\left(\theta_{0}+\theta_{3} \tau^{3}\right)}=V_{L}^{\dagger}, \quad M^{\prime}=V_{L}^{\dagger} M V_{R}=\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right)
$$

$$
\theta_{0}=\theta_{3}=\pi / 4,
$$

$\Delta$

VEV $\quad\langle\bar{\psi} \psi\rangle^{2}+\left\langle\bar{\psi} i \gamma_{5} \psi\right\rangle^{2}=4$

$$
\begin{aligned}
\cos \varphi_{3} & =1 \\
\cos \varphi_{0} & = \begin{cases}1, & 2 \Delta \leq m \\
\frac{m}{2 \Delta}, & -2 \Delta<m<2 \Delta \\
-1, & m \leq-2 \Delta\end{cases}
\end{aligned}
$$



This phase disappears in

$$
\begin{aligned}
\left\langle\bar{\psi} i \gamma_{5} \psi\right\rangle=2 \sin \varphi_{0} \cos \varphi_{3} & = \begin{cases}0, & m^{2} \geq 4 \Delta^{2} \\
\pm 2 \sqrt{1-\frac{m^{2}}{4 \Delta^{2}}}, & m^{2}<4 \Delta^{2}\end{cases} \\
\langle\bar{\psi} \psi\rangle=2 \cos \varphi_{0} \cos \varphi_{3} & = \begin{cases}2, & 2 \Delta \leq m \\
\frac{m}{\Delta}, & -2 \Delta<m<2 \Delta \\
-2, & m \leq-2 \Delta\end{cases}
\end{aligned}
$$



Spontaneous CP violation ! (eta condensation)

PS meson masses

$$
m_{\pi_{ \pm}}^{2}=m_{\pi_{0}}^{2}=\left\{\begin{array}{cl}
\frac{1}{2 f^{2}} 2|m|, & m^{2} \geq 4 \Delta^{2} \\
\frac{1}{2 f^{2}} \frac{m^{2}}{\Delta}, & m^{2}<4 \Delta^{2}
\end{array} \quad m_{\eta}^{2}=\left\{\begin{array}{cl}
\frac{1}{2 f^{2}}[2|m|-4 \Delta], & m^{2} \geq 4 \Delta^{2} \\
\frac{1}{2 f^{2}} \frac{4 \Delta^{2}-m^{2}}{\Delta}, & m^{2}<4 \Delta^{2}
\end{array},\right.\right.
$$

non-standard PCAC relation!

$m_{\pi}^{2}=\frac{1}{2 f^{2}} \frac{m^{2}}{\Delta}$

## How can we get this from WT-identities ?

$$
\left\langle\left\{\partial^{\mu} A_{\mu}^{3}+m \operatorname{tr} \tau^{3}\left(U^{\dagger}-U\right)\right\}(x) \mathcal{O}(y)\right\rangle=\left\langle\delta^{x} \mathcal{O}(y)\right\rangle
$$

taking $\mathcal{O}=\operatorname{tr} \tau^{3}\left(U^{\dagger}-U\right)$ and integrating over $x$

$$
\begin{array}{r}
\qquad \int d^{4} x\left\langle\frac{\operatorname{tr} \tau^{3}\left(U^{\dagger}-U\right)(x)}{} \operatorname{tr} \tau^{3}\left(U^{\dagger}-U\right)(y)\right\rangle=-2\left\langle\frac{\operatorname{tr}\left(U+U^{\dagger}\right)(y)}{=4 \cos \varphi_{0}}\right\rangle \\
=-i \frac{2 \sqrt{2}}{f} \cos \varphi_{0} \pi_{0}(x)
\end{array}
$$

$$
\begin{array}{r}
\square \frac{\cos ^{2} \varphi_{0}}{f^{2}} \underline{\int d^{4} x\left\langle\pi_{0}(x) \pi_{0}(y)\right\rangle=\cos \varphi_{0}} \\
=\frac{1}{m_{\pi_{0}}^{2}}
\end{array} \quad \downarrow m_{\pi_{0}}^{2}=\frac{m}{f^{2}} \frac{\cos \varphi_{0}}{=\frac{m}{2 \Delta}}
$$

$$
m_{\pi_{0}}^{2}=\frac{m}{f^{2}} \frac{m}{2 \Delta}
$$

one $m$ form WTI, the other $m$ from VEV.

## 5. Conclusions

Using ChPT with anomaly effect, we show

1. $m_{u}=0$ is nothing special if $m_{d} \neq 0$. (no symmetry)
2. At $m_{u}=m_{c}^{ \pm},-m_{c}^{-} \neq 0, m_{\pi^{0}}=0$.
3. $\left\langle\pi^{0}\right\rangle \neq 0$ at $m_{c}^{-}\left(-m_{c}^{-}\right)<m_{u}<m_{c}^{+}$. Dashen phase
4. $\chi=\infty$ at $m_{u}=m_{c}$.
5. $\chi=0$ at $m_{u}=0 . \boxtimes$ a solution to strong CP problem

## Mike's Oracles are confirmed by ChPT.

New predictions for 2-flavor QCD with $m_{u}=m_{d}$ and $\theta=\pi$

1. Spontaneous CP violation : $\langle\eta\rangle \neq 0$
2. Non-standard PCAC relation: $m_{\pi}^{2} \propto m_{q}^{2}$

I thank Mike a lot for his many contributions to our lattice community.


I wish Mike has fruitful and enjoyable life, and sometimes visit me in Kyoto !

