Conserved charge fluctuations and the phase diagram of strongly interacting matter

Frithjof Karsch, BNL/Bielefeld

Strongly interacting matter in the '70s

Rolf Hagedorn: Hadron resonance gas, ultimate temperature?

Mike Creutz

- the physics/thermodynamics of strong interaction matter is described by the theory of strong interactions – Quantum Chromo Dynamics (QCD)
- understanding highly non-perturbative/collective effects like phase transitions requires the application of numerical techniques – lattice QCD

Asymptotic Freedom Equation of state and Hadron Resonance Gas

3

QCD-EoS and the Hadron Resonance Gas (HRG)

Probing the hadron spectrum using QCD thermodynamics

5

Probing the hadron spectrum using QCD thermodynamics

Probing the hadron spectrum using QCD thermodynamics

- additional resonance in the hadron spectrum increase the pressure, energy density as well as trace anomaly
- charmed baryons are too heavy to have any impact on bulk thermodynamics
- additional strange baryons may increase the pressure by about 3% at T=160 MeV
- need to be more selective to see effects of additional strange and charmed hadronic resonances

Fluctuations and Correlations: Susceptibilities

- probing the response of a thermal medium to an external field, i.e. variation of one of its external control parameters: T, μ, m_q

(generalized) response functions == (generalized) susceptibilities

pressure:
$$\frac{p}{T^4} \equiv \frac{1}{VT^3} \ln Z(V, T, \mu_{B,Q,S}, m_{u,d,s})$$

Correlations and Fluctuations: HRG vs. LQCD

- construct QCD observables that would project onto specific quantum numbers, if QCD = HRG
- E.g.: HRG pressure:

$$rac{P}{T^4} = \sum_{m \in mesons} \ln Z^b_m(T,V,\mu) + \sum_{m \in baryons} \ln Z^f_m(T,V,\mu)$$

HRG baryon susceptibilities:

$$\chi_{nmkl}^{BQSC} = \sum_{m \in baryons} \frac{\partial^{(n+m+k+l)} \ln Z_m^f(T, V, \mu)}{\partial \hat{\mu}_B^n \partial \hat{\mu}_Q^m \partial \hat{\mu}_S^k \partial \hat{\mu}_C^l} \bigg|_{\mu=0}$$

sum "knows" about spectrum

Correlations and Fluctuations: HRG vs. LQCD

- in a HRG charge fluctuations obey some simple relations because B, Q, S quantum numbers are integer; -- or even restricted to |B|=0, 1
- baryonic part of the pressure:

e.g. $\chi_{11}^{BS} = \chi_{31}^{BS}$, $\chi_2^B = \chi_4^B$ valid in any HRG (irresp. of the spectrum)

Correlations and Fluctuations: HRG vs. LQCD

- HRG model description of fluctuations and correlations breaks down above T=160 MeV
- this also is the case for the strange baryon sector

A. Bazavov et al. (BNL-Bielefeld-CCNU), Phys. Rev. Lett. 111, 082301 (2013)

Evidence for many charmed baryons in thermodynamics

- use charge fluctuations and correlations to probe the hadron spectrum
- HRG pressure of open charmed mesons and baryons particularly simple, because multiple charmed baryons are too heavy to be of thermodynamic relevance; e.g.

Evidence for many charmed baryons in thermodynamics

A. Bazavov et al., arXiv:1404.4043

close to Tc charmed baryon fluctuations are about 50% larger than expected in a HRG based on known charmed baryon resonances (PDG-HRG)

charmed pressure ratios

all charmed baryons/mesons

charged charmed baryons/mesons

strange charmed baryons/mesons

including resonance predicted in quark model calculations and observed in lattice QCD calculations allows for a HRG model (QM-HRG) description of lattice QCD results on conserved charge fluctuations and correlations

Evidence for more strange baryons in thermodynamics

Evidence for more strange baryons in thermodynamics

Exploring the QCD phase diagram

HRG model, lattice QCD and critical behavior

for a wide range of baryon chemical potentials freeze-out happens in or close to the QCD transition region: predicted
 P. Braun-Munzinger et al., Phys. Lett. B596, 61 (2004)

caveat: freeze-out parameter extracted from experimental data by comparing to the Hadron Resonance Gas (HRG) model, i.e. not QCD

Strange hadron yields in HIC

$$\frac{n_{\bar{\Lambda}}}{n_{\Lambda}}, \frac{n_{\bar{\Sigma}}}{n_{\Sigma}}, \frac{n_{\bar{\Omega}}}{n_{\Omega}} = \exp\left[-\frac{2\mu_{B}^{f}}{T^{f}} - \frac{2\mu_{S}^{f}}{T^{f}}|S|\right] = \exp\left[-\frac{2\mu_{B}^{f}}{T^{f}}\left(1 - \frac{\mu_{S}^{f}}{\mu_{B}^{f}}|S|\right)\right]$$

$$\frac{\Lambda/\bar{\Lambda} \quad \Sigma/\bar{\Sigma} \quad \Omega/\bar{\Omega}}{\int_{-1.5}^{-1.0} \int_{-1.5}^{-1.0} \int_{-1.5}^{-1.$$

STAR: F. Zhao, PoS CPOD2013 (2013) 036 NA57: F. Antinori et al, PLB 595 (2004) 68

Impact on determination of freeze-out parameter

Thanks to Mike's pioneering work

LGT calculations have achieved two important goals of studies of strong interaction thermodynamics

- determination of transition temperature Tc
- calculation of the equation of state

with physical quark masses in the continuum limit

- Gross features of bulk thermodynamics at low temperatures are compatible with hadron resonance gas thermodynamics;
- deviations from PDG-HRG provide

evidence for a richer strange and charmed baryon spectrum than so-far known experimentally