1-jettiness at the EIC, first look & plans

Leticia Cunqueiro (ORNL)

study for the YR in collaboration with Peter Jacobs (LBNL) and Sookhyun Lee (University of Michigan, Ann Arbor)

N³LL calculations of 1-jettiness in DIS

DIS 1-jettiness calculations resummed to N³LL accuracy in progress

Calculation uncertainty of the order of 1%, sensitivity to α_s (and PDFs) (to be compared to inclusive/dijet extractions in DIS with uncertainties of ~10%)

See last presentation by Christopher Lee: https://indico.bnl.gov/event/8238/contributions/36464/attachments/27517/421 05/EICUG_2020_Apr_06.pdf

And some related references: <u>https://arxiv.org/pdf/1407.6706.pdf</u>

https://arxiv.org/pdf/1303.6952.pdf

Great opportunity and great challenge, can we carry out the measurement with similarly high precision? Goal for YR: determine and document what level of precision it requires in

terms of instrumental design and other measurement parameters

1-jettiness definition

qB and qJ are 4-vectors along the nuclear beam and the jet directions respectively

The observable is a scalar product of 4-vectors, frame invariant.

 τ_1 ->0 : 2 jets, one along the beam direction from ISR from the proton τ_1 ->1: >2 jets in the final state

Key points

- -Globalness? impact of experimental η,θ cutoffs
- -Impact of non-perfect PID (pion mass assumption)
- -Tracking limitations
- -Impact of low momentum cutoffs for tracks imposed by the magnetic field
- -Limitations induced by the response of the hadronic and electromagnetic calorimetry
- -Explore different modes of measurment (track-only, track+EMCAL, track+EMCAL+HCAL)

Our goal

Estimate a final τ_1 cross section uncertainty considering all possible sources of experimental systematics: positron energy calibration, uncertainty of the hadronic energy scale, tracking efficiency uncertainty, model dependency of correction factors, unfolding uncertainties, lumi determination etc ³

First look, jet kinematics in the lab frame

First look, jet spectrum in the lab frame

~10.e7 jets with p_T >10 GeV, integrated over EIC time

Most of the events have a single(non-ISR) jet with $p_T>5$ GeV The conditional probability to have a secon jet with $p_T>5$ is of the order of 1%

First look, 1-jettiness in the lab frame

Simple studies on particle mass and particle cutoff dependence, ongoing More realistic detector studies using DELPHES will follow