» RHIC Polarimetry «

Oleg Eyser for the RHIC Polarimetry Group 2014 RHIC Retreat, August 14

Online Results 2013 (HJET)

α-Calibrations (pC Polarimeters)

Large fluctuations observed in all pC detectors

» Hydrogen Jet Polarimeter «

4

Asymmetries & Background

 $P_{Y} = -\frac{\varepsilon_{Y}}{\varepsilon_{T}}P_{T} \quad P_{B} = -\frac{\varepsilon_{B}}{\varepsilon_{T}}P_{T}$

 $\varepsilon_S = \frac{\varepsilon - r \cdot \varepsilon_B}{1 - r}$

Signal: ε_S Background: ε_B Inclusive: ε Background fraction: r

Example strip (68) from fill 17600

Jet Target Asymmetries

Full run 13 statistics! This is all of the available data*.

(*) Excludes a handful of fills with less than 90 min. of jet operation.

Asymmetries are transformed to blue beam coordinates (target asymmetry flipped)

Difference between *signal asymmetries* is consistent with zero.

Fill Dependence

8

Background Fraction

Beam Asymmetries

» Carbon Polarimeters «

Gain Variations

- Large variations observed between different calibrations
- Correlated with leakage bias current

- α-calibrations typically done at the end of each fill
- Essential for identification of recoil Carbon

Leakage Bias Current (Example)

Gains from α-Calibrations

Gains Corrected for Bias Current

Target Lifetime

- Target tails start to glow when outside of beam
- Most targets break near the end
- Induced electron motion from high-frequency electromagnetic fields in the machine (200 MHz RF) → provide surface for the field lines to spread out

Electric Field at Target Location

Beam Test in Run 14

- Fin Setup was tested during He-Au running in June-July 2014
 - Detectors had to be removed for test
 - Comparison of brightness of glowing
 - Au beam peak current 1.4 A
 - Fins reproducibly dim the glowing of the targets
 - Same can be achieved by reducing voltage on 200 MHz RF (650 kV → 100 kV)
 - Combination of fins and lowered voltage is best for limited space and target switches
- Fins should be installed on all targets (consistency)
 - More work initially, but worth if no new targets are needed during the run

» Run 15 Preparation «

Hydrogen Jet Polarimeter

- Replacement of Si detectors in HJET
 - Larger acceptance (vertical)
 - Ordered from Hamamatsu (mid Sep)
 - Ceramic boards from Instrumentation Div. (Oct)
- Measurement of molecular component of hydrogen jet
 - Major systematic uncertainty last done before run 4
 - Installation of electron beam for measurement in Oct
 - Dependence on nozzle temperature
- New DAQ computer (similar to pC DAQ)
- Online analysis with new GUI
 - Flexible to use \rightarrow same as offline analysis \rightarrow fast feedback

Carbon Polarimeters

- Calibration procedure is established at end of fill
 - Leakage bias current effect can be corrected (mostly)
 - Better to avoid large bias currents
 - Changes to ceramic boards in Run 13 not entirely clear
- Target lifetime
 - Add fins to all target holders (after target installation)
 - Creates additional work initially, but will save target replacements during the run
 - Use thick targets on all positions
- New DAQ computers (similar to HJET DAQ)

Run 15 Operation

General considerations for polarized proton beams

- Bunch pattern
 - Alternating patterns with flipped bunch polarizations
 - Same as before: align with bunch number, not consecutive filled bunches (if empty bunches for electron lenses)
- Bunch intensity
 - Observed low intensity for first few bunches (probably due to phasing between AGS and RHIC)
 - Problematic for relative luminosity determination

Run 15 Operation

- Jet operation in p+A
 - Ion beams on the jet target will lead to largely increased background in the detectors
 - It is desirable to have only the proton beam on the jet target
 - Displace proton and ion beam as much as possible
 - Jet target can be moved mechanically to overlap with proton beam
- α-Calibration is done after each fill for pC polarimeters
 - Use a similar procedure for HJET

Summary

- Currently finalizing the run 13 offline analysis
- DAQ computers will be replaced
- Hydrogen jet polarimeter
 - Measurement of molecular component in target
 - Replacement of detectors
 - Beam displacement for p+A operation required
- pC polarimeters
 - New target holders for improved lifetime of targets
- Alternating bunch patterns for polarized proton beams