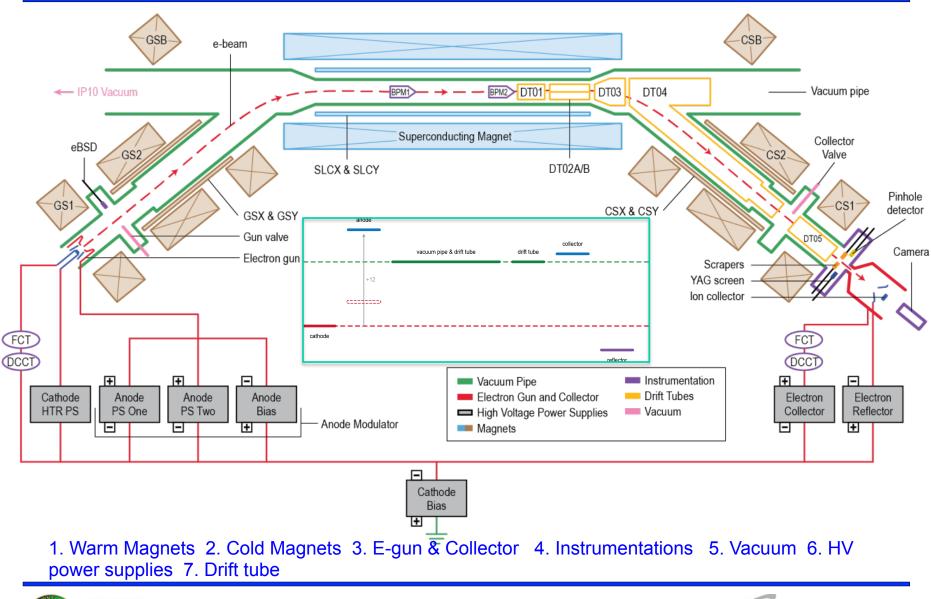
E-lens commissioning, plans for shutdown and next run

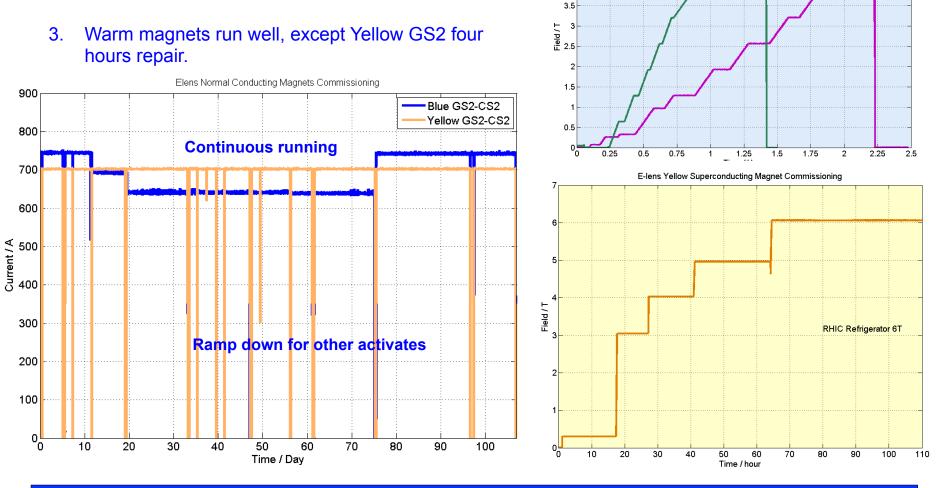
Xiaofeng Gu

2014 RHIC Retreat 14 August 2014



a passion for discovery

Introduction -- E-lens Layout



2

Hardware - Magnets

- 1. Blue Solenoid 5T with Dewar, 4.5 T with RHIC refrigerator;
- 2. Yellow Solenoid 6T.

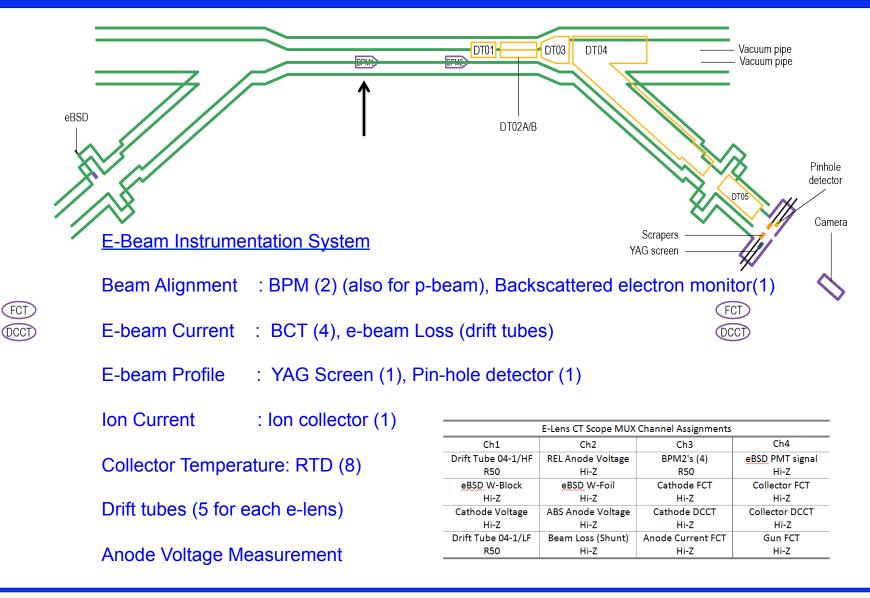
5.5

5

4.5

Blue Dewar

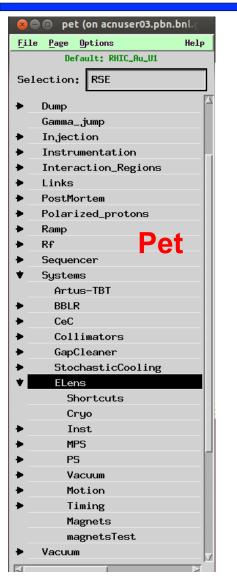
Blue RHIC Refrigerator

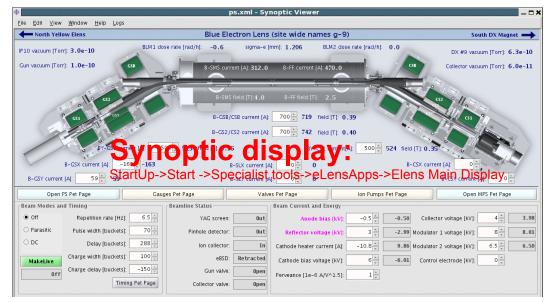

3

E-lens Blue Superconducting Magnetic Field Comssioning

RHIC Refrigerator 4.5T

Dewar 5T


Hardware - Instrumentation



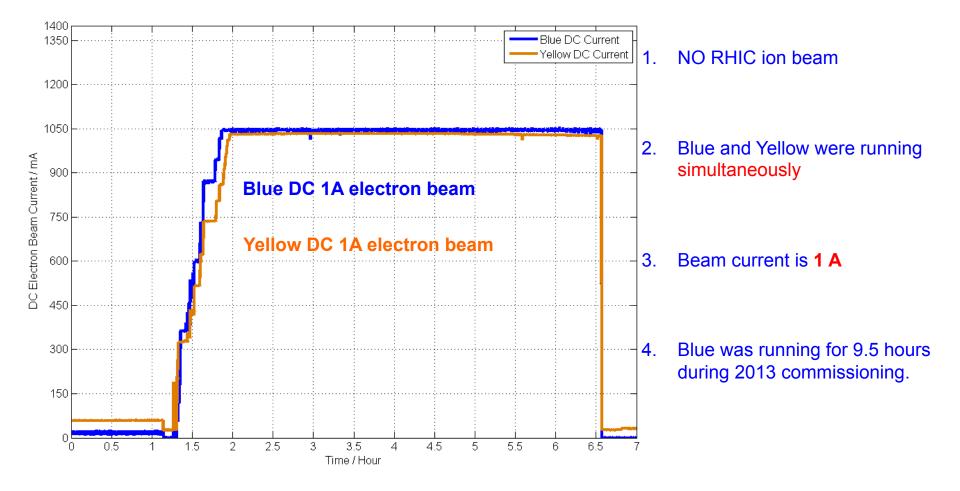
Software – Control and application

- 1. Power supplies (PS): all warm magnets, HV, cathode heater, modulator
- 2. Timing: e-beam mode control, instrumentation timing control
- 3. MPS: machine protection system
- 4. Instrumentation: all instrumentation parameters and motion control
- 5. Magnets: cold magnet

6. Vacuum: gun, collector and IP vacuum

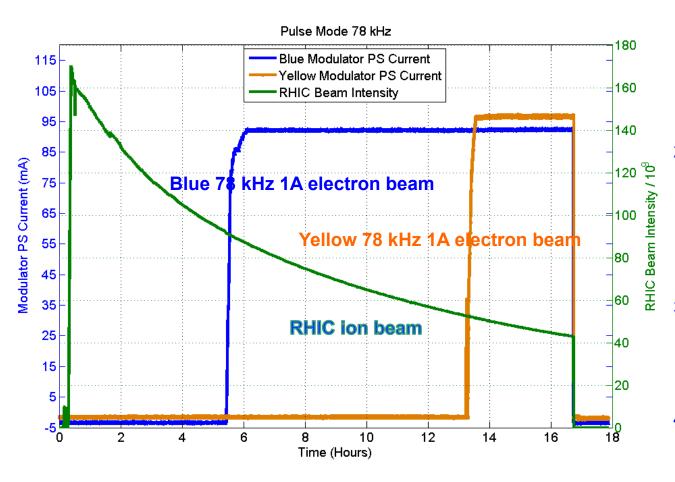
Electron Beam

					- E-beam commissioning					
Hardware					Electron beam		55101	iiig		
Vacuum system closed	12/31/13	12/31/13	12/31/13	12/31/13	ASSRC checklist done	02/26/14	02/26/14	02/26/14	02/26/14	
Bake-out completed	01/20/14	01/20/14	01/20/14	01/20/14						
GS1s operational	02/19/14	02/19/14	02/19/14	02/19/14	MPS verified	02/26/14	02/19/14	02/26/14	02/19/14	
GS2-CS2 operational	02/19/14	02/19/14	02/19/14	02/19/14	sinle pulse, low current	03/05/14	03/01/14	03/07/14	03/05/14	
CS3s operational	02/19/14	02/19/14	02/19/14	02/19/14	~100 Hz, low current	03/07/14	03/06/14	03/07/14	03/06/14	
GSX-GSY-CSX-CSY operational	02/19/14	02/19/14	02/19/14	02/19/14	BPM operational	03/15/14		03/15/14	04/01/14	
Gun conditioned	02/19/14	02/19/14	02/19/14	02/19/14	78 kHz, low current	03/22/14	03/14/14	03/22/14	03/11/14	
Drift tubes conditioned	02/19/14		02/19/14							
Collector conditioned	02/19/14	02/19/14	02/19/14	02/19/14	78 kHz, timed into abort gap	03/22/14	03/14/14	03/22/14	03/18/14	
SC solenoid 3T + FF 470 A	02/26/14	03/05/14	02/26/14	03/05/14	78 kHz, full current (1 A)	03/22/14	03/18/14	03/22/14	03/18/14	
SC solenoid 3T + FF 470 A	02/26/14	03/11/14	02/26/14	03/11/14	Profile measured with YAG screen	03/22/14	04/16/14	03/22/14	04/16/14	
Operational recovery for SC solenoid and FF	02/28/14	04/02/14	02/28/14	04/02/14	Profile measured with pinhole detector	03/22/14	05/07/14	03/22/14	05/28/14	
Turn on all warm solenoids during operations	03/05/14	02/27/14	03/05/14	02/27/14			03/07/14		03/20/14	
Turn on all warm dipoles during operatoin	03/05/14	03/01/14	03/05/14	03/01/14	Drift tubes tested operationally	03/29/14		03/29/14		
Establish operational recovery for warm solenoids	03/05/14	04/10/14	03/05/14	04/10/14	DC beam, low current	03/29/14	03/11/14	03/29/14	03/11/14	
Established RHIC ops with all magnets always on	03/06/14	03/12/14	03/06/14	03/12/14	DC beam, full current (1 A)	03/29/14	04/21/14	03/29/14	04/21/14	
Long superconducting dipole correctors operational (4	03/26/14	03/19/14	03/26/14	03/19/14	Ion extraction operational	03/29/14		03/29/14		
SC solenoid 4T + FF 470 A	06/28/14	05/16/14	06/28/14	05/16/14						
SC solenoid 5T + FF 470 A	06/28/14		06/28/14	05/28/14	78 kHz, low current in operational store	04/12/14	03/19/14	04/12/14	03/19/14	
SC solenoid 6T + FF 470 A	06/28/14		06/28/14	05/28/14	78 kHz, full current (1 A) in operational in store	04/15/14	04/21/14	04/15/14	04/21/14	


- 1. Electron beam propagated with several configurations: 1.5T (470A fringe), 3T (250A and 470A fringe), 4T (470A fringe);
- 2. Provide electron beam for all APEX sections: elens commissioning (some times, only limited mode available), beam-beam instability with low field, asymmetric beam-beam, beam-beam driven Non-linear resonance;
- 3. Drift tube connections issues;
- 4. Blue superconducting solenoid 6T field.

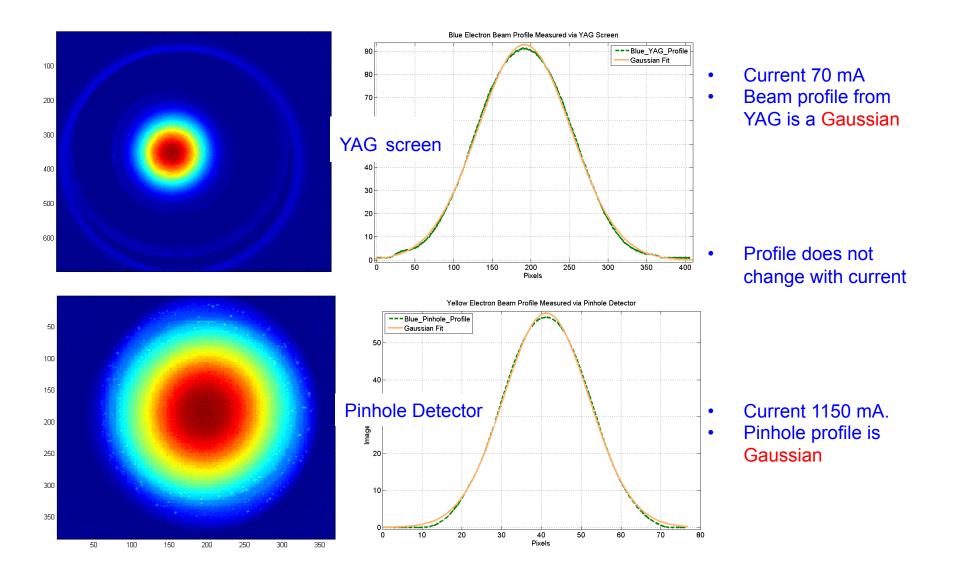
courtesy of Peter Thieberger

Electron beam – DC mode

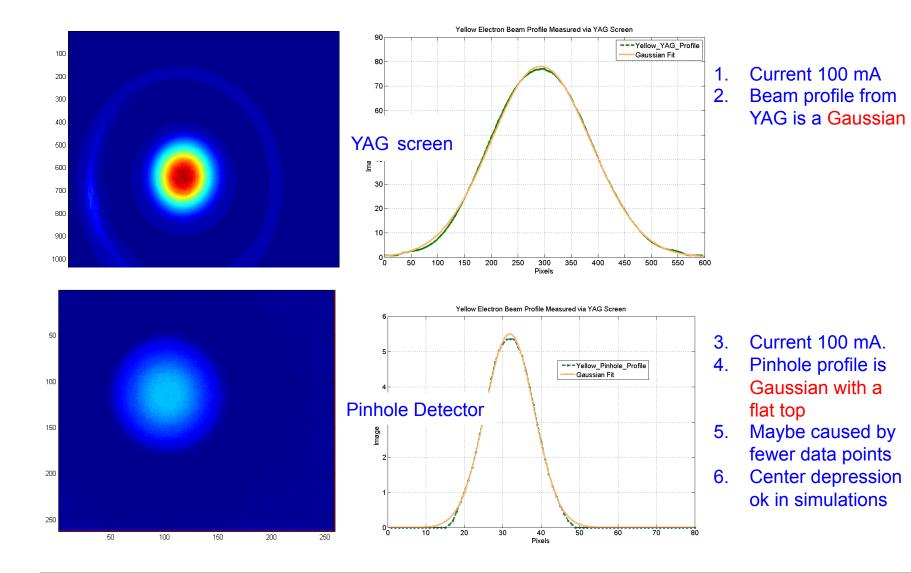


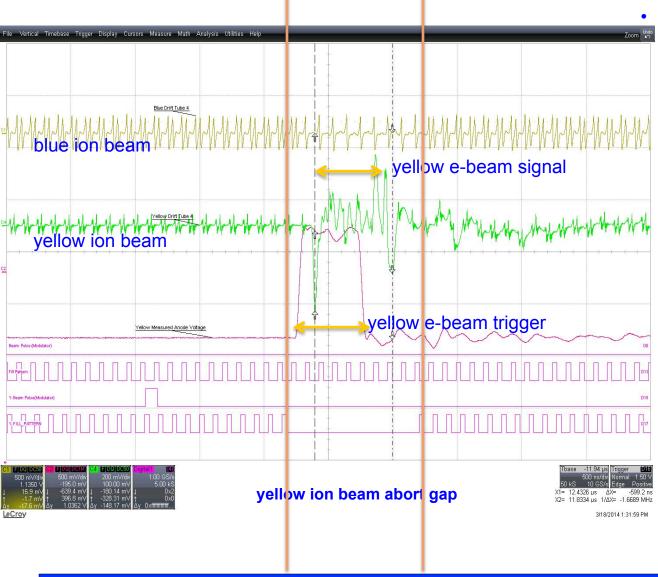
7

Electron beam – Pulsed Mode

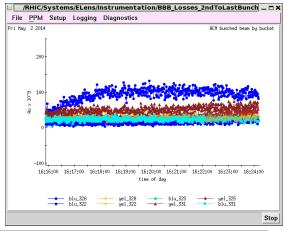


- 1. Modulator current indicates 78 kHz is running.
- Blue and Yellow were running 78 kHz pulse mode with 1A simultaneously within RHIC beam abort gap;
- 3. Parasitic to RHIC beam provides more commissioning time;
- Blue e-lens 78 kHz was running for 14 hours during 2013;


Electron beam Blue Transverse Profile


Electron beam Yellow Transverse Profile

Longitudinal alignment



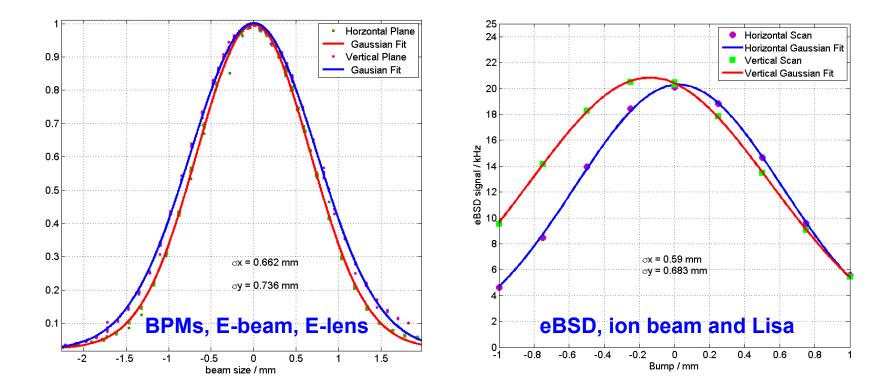
longitudinal and transverse alignment via colliding with the last one or two bunches

Aligned to beam abort gap via Drift tube 4.

Longitudinal alignment: no emittance growth or loss for the unwanted bunch.

http://www.cadops.bnl.gov/cgi-bin/elog/viewMain.pl? elog=Elens_2014&shiftlog=Mon_Apr_28_2014_12:5 4:48_PM#20140402180729

11


BROOKHA

NATIONAL LABORATORY

Transverse Alignment

- BPMs in both lenses to bring e- and A- beam in proximity (transverse electron beam position for blue and yellow, electron beam angle steering for yellow)
- backscattered electron detector to maximize overlap P. Thieberger, BIW12, IBIC2014
- BPMs and electron beam; BPMs and ion; **eBSD** and ion beam; eBSD and electron beam.

RHIC Electron Lenses and Their Operation: An Introduction

Contents

I. II			
A.	The sub-system of the electron lens		
В.	The electron lens control software	10	
II.	Operation of the RHIC electron lens		
A.	Turn ON/OFF power supplies and set their initial values		
В.	Vacuum conditioning with cathode heater		
C.	Hi-potting the e-lens system		
D.	Control of the E-beam position	24	
E.	Run e-lens with different modes		
F.	Align e-beam with RHIC beam		
G.	Measuring the beam profile		
H.	Trouble shoot via MPS		
III.	II. Discussion		
IV.	Acknowledgments		
V.	References:		
VI.	Appendix		

- 1. The document about e-lens operation (2014 retreat website, next to this presentation, still open for modification).
- 2. Trained a operator for e-lens operation during run and the day of run.
- Give an introduction to e-lens;
- Can run all modes: continuous, parasitic and DC;
- Start to familiar with the Beam profile measurement via Yag and pinhole;
- Measured e-gun perveance;

٠

•

Run parasitic mode as a gap cleaner independently.

- Blue BPM2, horizontal plane, no signal: BPM2 can not work very well.
- Drift tubes: Blue DT02A and DT02B connection, Yellow DT02A and DT02 power supplies and bias tee: clearing electrode for electron cloud, and ion accumulation extraction;
- Collector PS induced voltage on cathode: Blue YAG screen was damaged, will be replaced;
- Blue eBSD inserted and damaged by e-beam without protection: replaced;
- Blue modulator 240mA: HV breakthrough between cathode and anode?
- Blue and yellow Modulator 24 V power supplies: replaced and will move them out of tunnel;
- Yellow GS2/CS2 power supply: Fixed;
- 05/24/2014 yellow DC beam trigger failure: always ON, high ion beam loss during injection.

Vacuum spike, E-cloud and Others

These are the several cases where an electron lens had a detrimental effect on the beam : 18068 (03/18/14) vacuum spike, increased loss rate, emittance increase (reduce ramp rate for current); 18135 (03/28/14) high pressure, loss rate increasing slightly, no effect on emittance (set limit for vacuum); 18170 (04/04/14) no pressure increase, increase in Yellow and decrease in Blue loss rate, emittance increase in both rings;

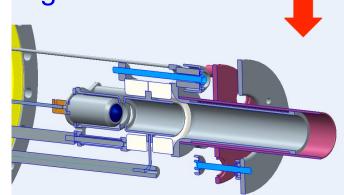
18193 (04/10/14) pressure increase, increase in Blue loss rate, emittance increase in both rings (reduce limit from 5E-8 Torr to **1E-8Torr, increase parasitic mode current slowly**);

18338 (05/21/14 12:41) during APEX, drift tube induced vacuum spike, large emittance increase;

(05/21/14 ~ twenty minutes) during APEX, drift tube were ON, beam loss during injection or ramp?

18349 (05/23/14 11:28) yellow vacuum spike with -3kV cathode bias, emittance increase;

(05/28/14 20:06~21:10) drift tube voltage were forgot to turn OFF, vacuum spike during ramp. MPS for drift tube was OFF (enable MPS to trip off drift tube PS);


One mystery: beam loss when e-lens superconducting magnets on

2015 – First proton run with electron lenses => compensation

- •Larger cathodes (7.5 vs. 4.1 mm radius)
 - => allows for matched beam size with high solenoid field
 - => raises instability threshold
 - => easier alignment
- Transverse damper
 raises instability threshold

New lattice, based on ATS optics (S. Fartoukh, CERN)
 => phase advance kp between p-p and p-e interactions
 => small nonlinear chromaticity
 => no depolarization

Shut down plan

- 1 Repair the blue bad BPM cable/feed through;
- 2 check the cleaning electrode for both e-lens;
- 3 Repair drift tube cable/feed through for both blue and yellow.(why exactly the drift tubes got shorted to ground after bakeout and if necessary to change the design of tubes/connections slightly to prevent it from ever happening again in a future)
- 4 Replace the three bad blue temperature sensors (done);
- 5 Check yellow cathode size and blue gun;
- 6 Measure magnetic field at YAG as function of CS1 and CS2 current;
- 7 Increase pumping speed in IR10, possibly clearing electrode;
- 8 Protective baffle for the eBSD;
- 9 Transverse damper in both beam;
- 10 e-beam current monitor from the first drift tube;
- 11 increase bake-out temperature, cleaning vacuum chamber & drift tube;
- 12 new gun with r = 7.5 mm;
- 13 collector modification for larger e-beam;
- 14 calibrate warm solenoid current read-back;
- 15 Train SC magnets to 6T;
- 16 Documentation of e-lens;
- 17 Picture in tunnel with every one involved;
- 18 e-beam current feed back;
- 19 Power supplies precision / instability;
- 20 Real DC beam (timing;
- 21 Yellow synoptic display.
- 22 Yellow reflector PS trip off issue.
- 23 Blue YAG screen
- 24 Modulator PS 25 auto steer application

Office of Science courtesy of Peter Thieberger

Summary:

- 1. Most e-lens hardware and software are functional except one blue BPM stripline and drift tube system;
- 2. Propagated e-beam with several configurations. E-beam current and transverse profile are met the requirement;
- 3. Longitudinal and transverse alignment with RHIC beam;
- 4. Provide e-beam for APEX for several topics;
- 5. 1E-8 Torr (5E-9 Torr) vacuum criteria was found to prevent e-cloud developing, maybe also useful for other projects with e-beam;
- 6. Need to pay attention to clean vacuum pipe and elements for electron machine (vacuum spike and MPS).

courtesy of Peter Thieberger

18

ACKNOWLEDGMENTS:

Thank CAD power/pulse supply, instrumentation, control, cryo, vacuum, water groups and others for their help; Thank Guillaume, Chuyu and all operators.

ACKNOWLEDGMENTS:

V. Shiltsev, A. Valishev, and G. Stancari (Fermilab).

CONTRIBUTORS:

X. Gu, Z. Altinbas, D. Bruno, E. Bajon, M. Bannon, M. Costanzo, W.C. Dawson, A.K. Drees, W. Fischer, B. M. Frak, D.M. Gassner, K. Hamdi, J. Hock, J. Jamilkowski, P. Kankiya, R. Lambiase, Y. Luo, M. Mapes, G. Marr, C. Mi, J. Mi, R. Michnoff, T. Miller, M. Minty, C. Montag, S. Nemesure, W. Ng, D. Phillips, A.I. Pikin, S.R. Plate, P. J. Rosas, T. Samms, P. Sampson, J. Sandberg, Y. Tan, R. Than, C.W. Theisen, P. Thieberger, J. Tuozzolo, and W. Zhang

