Could Timepix be useful at EIC

- We (Glasgow group) are involved in EIC
 - But not yet in any specific detector project
- Low Q² tagger at CLAS12, Jlab
 - Development, construction, slow controls
 - Data analysis in progress
- Current projects with timepix3
 - Polarimeter for linearly polarised photons
 - RFPMT for picosecond timing
- UK Infrastructures bid for EIC
 - Glasgow component to investigate timepix detectors for potential use at EIC
- Could timepix4 have a role at EIC?

Timepix3

Spot the difference

Double sided silicon strip detector (1992 – my PhD) 15x15mm, 48 x 48 strips = 96 channels ~1us shaping time. State-of-the-art in 1992 timepix3 (2018) 14x14mm, 256 x 256 pixels = 65536 channels F~10ns shaping time. State-of-the-art today.

Ken Livingston, Daresbury. Nov 2018

General Requirements					
Pixel size	55 μm x 55 μm				
Pixel matrix array	256 x 256				
Target floorplan	3 sides buttable and minimum periphery				
Highly Configurable	HEP platform for many projects				
Time stamp and TOT recorded simultaneously	YES				
Analog Power Pulsing	YES				
No event counting mode	Only for testing				
Technology	IBM 130nm DM 4-1				
Power consumption	<1.5W/cm ² (~45 µW/pixel) @1.5 V				
TSVs possibility	YES				
Chip Readout Modes					
Data-driven readout (token pass)	YES				
Zero-suppressed and Sparse data readout	YES				
Dead time free	YES (if count rate < 40Mhits/s/cm ²)				
Time Stamp (ToA)					
Global Time stamp (bunchID)	40 MHz (25ns)				
Global Time stamp range	14bits (409.6 μs)				
Accurate Time stamp per pixel	4bits \rightarrow 1.56ns resolution (640 MHz)				
Local Oscillator frequency	640 MHz				
On-Superpixel local oscillator tuning	Locked using periphery PLL				
Charge measurement (ToT)					
TOT Clock reference	40 MHz (25ns)				
TOT range	10 bits				
Periphery					
Analog Blocks	Band-Gap, DACs and Test Pulse				
E-fuses (chip ID, hard-wire configuration)	YES				
Programmable PLL	40 → 40, 80, 160, 320, 640 MHz				
Periphery/output clock	40, 80, 160, 320 MHz				
RO architecture	[1 8] SLVS DDR 8b/10b Encoding				

From timepix3 manual L2/3/2014 CERN, Xavier Llopart, Tuomas Poikela

Ken Livingston, Daresbury. Nov 2018

General Requirements					
Pixel size	55 μm x 55 μm				
Pixel matrix array	4-0 A-2-30				
Target floorplan	3 sides buttable and minimum periphery				
Highly Configurable	HEP platform for many projects				
Time stamp and TOT recorded simultaneously	YES				
Analog Power Pulsing	YES				
No event counting mode	Only for testing				
Technology	IBM 130nm DM 4-1				
Power consumption	<1.5W/cm ² (~45 µW/pixel) @1.5 V				
TSVs possibility	YES				
Chip Readout Modes					
Data-driven readout (token pass)	YES				
Zero-suppressed and Sparse data readout	YES				
Dead time free	YES (if coult rate < 40Mhits/s/cm ²)				
Time Stamp (ToA)					
Global Time stamp (bunchID)	40 MHz (25ns)				
Global Time stamp range	14bits (409.6 µs)				
Accurate Time stamp per pixel	4bits \rightarrow 1.56ns resolution (640 MHz)				
Local Oscillator frequency	640 MHz				
On-Superpixel local oscillator tuning	Locked using periphery PLL				
Charge measurement (ToT)					
TOT Clock reference	k reference 40 MHz (25ns)				
TOT range	10 bits				
Periphery					
Analog Blocks	Band-Gap, DACs and Test Pulse				
E-fuses (chip ID, hard-wire configuration)	YES				
Programmable PLL	40 → 40, 80, 160, 320, 640 MHz				
Periphery/output clock	40, 80, 160, 320 MHz				
RO architecture	[1 8] SLVS DDR 8b/10b Encoding				

 Ideal features for spectrometer focal plane type applications..
High rate capability
Excellent position resolution.

From timepix3 manual L2/3/2014 CERN, Xavier Llopart, Tuomas Poikela

Ken Livingston, Daresbury. Nov 2018

General Requirements					
Pixel size	55 μm x 55 μm				
Pixel matrix array	120 A 230				
Target floorplan	3 sides buttable and minimum periphery				
Highly Configurable	HEP placorm for many projects				
Time stamp and TOT recorded simultaneously	YES				
Analog Power Pulsing	YES				
No event counting mode	Only for testing				
Technology	IB14 130nm DM 4-1				
Power consumption	<1.5W/cm ² (~45µW/pixel) @1.5 V				
TSVs possibility	YES				
Chip Readout Modes					
Data-driven readout (token pace)	YES				
Zere suppressed and Sparse data readout	YES				
Dead time free	YES (if could rate < 40Mhits/s/cm ²)				
Time Stamp (ToA)					
Global Time stamp (bunchID)	40 MHz (25ns)				
Global Time stamp range	14bits (409.6 μs)				
Accurate Time stamp per pixel	4bits \rightarrow 1.56ns resolution (640 MHz)				
Local Oscillator frequency	640 MHz				
On-Superpixel local oscillator tuning	Locked using periphery PLL				
Charge measurement (ToT)					
TOT Clock reference	40 MHz (25ns)				
TOT range	10 bits				
Periphery					
Analog Blocks	Band-Gap, DACs and Test Pulse				
E-fuses (chip ID, hard-wire configuration)	YES				
Programmable PLL	40 → 40, 80, 160, 320, 640 MHz				
Periphery/output clock	40, 80, 160, 320 MHz				
RO architecture	[1 8] SLVS DDR 8b/10b Encoding				

From timepix3 manual L2/3/2014 CERN, Xavier Llopart, Tuomas Poikela

- Ideal features for spectrometer focal plane type applications.
 High rate capability,
 Excellent position resolution.
- High rate (application dependent) Needs to be handled onboard.

Frame based (as opposed to event) So - not really dead time free.

Heat. Needs to be cooled. Small and Expensive. No tracking barrels

Timepix3 example – pair polarimeter

Simon Gardner

A pair polarimeter (in progress now) In vacuum. Close to beam. Low event rate (kHz/cm^2). Prototype is shown, with only 1 timepix3 in either side (off the shelf, ADVADAQ).

Timepix3 example – Pair polarimeter

Simon Gardner

Timepix example – focal plane microscope

A Focal plane microscope for a spectrometer. Not in vacuum. High event rate (MHz/cm^2).

Timepix example – RFPMT

RFPMT – for ps timing of single photons.

Times converted into positions with RF deflector. Timepix3 high vacuum endcap development – Glasgow + Daresbury. Simulation and tracking analysis well developed.

FPGA based module for 4 x timepix3

James Lawson, UKRI, Daresbury. Nov 2018

Currently in development between Glasgow and UKRI, Daresbury Group.

FPGA based module for 4 x timepix3 Mos Kogimtzis, UKRI, Daresbury. Dec 2019

mechanical assembly of 4x4 timepix3_asic_pcb

asic and flange pcbs

Timepix3 vs Timepix4

Timepix4: A 4-side tillable large single threshold particle detector chip with improved energy and time resolution and with high-rate imaging

			Timepix3 (2013)	Timepix4 (2019)
Technology			130nm – 8 metal	65nm – 10 metal
Pixel Size			55 x 55 μm	55 x 55 μm
Pixel arrangement		ent	3-side buttable 256 x 256	4-side buttable 512 x 448 3.5x
Sensitive area			1.98 cm ²	6.94 cm ²
		Mode	TOT and TOA	
رم Data di	Data driven	Event Packet	48-bit	64-bit 33%
de	g (Tracking)	Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm ² /s
б W Thop B Frame based (Imaging)		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel 8x
	Frame	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-b il))x
	Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel a	
	(intaging)	Max count rate	~0.82 x 10 ⁹ hits/mm ² /s	~5 x 10º hits/mm²/s8x
TOT energy resolution		olution	< 2KeV	< 1Kev
Time resolution			1.56ns	~200ps
Readout bandwidth		dth	≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbps)

Xavier.llopart@cern.ch Medipix Symposium, Sept 2019

Infrastructures EIC proposal

Glasgow have proposed investigating

Rate capability Data processing and reduction / triggering Timing and Energy resolution Radiation hardness Performance in a B field (eg 3T). Implementation in vacuum Cooling Development of small timepix3 based prototype to take to beam tests

MAPS vs. timepix Depends on the application

Maps advantages compared to timepixcan be large areasmall pixelcheaper than hybrid pixel detectorless scatter for MIPS

Maps disadvantages compared to timepix slow` i no timing info

integration of charge (for some apps could be + or -) can't stop X-rays as epi layer is \sim 20 um.

Could timepix 4 benefit EIC ?

Glasgow group mainly involved with experiments at JLAB

Main Physics interests lie with exclusive processes

- DVCS and DVMP for nucleon structure and imaging
- Low Q2 meson production for
 - Baryon spectroscopy at low W
 - Meson spectroscopy at high W

This mainly requires small t- production => proton along beam at EIC

Far Forward Ion and Low Q2 tagging critical for these experiments

Summary

- Timepix3 some very useful features
 - Already used in Glasgow projects
- Timepix4 coming soon
 - 4-side buttable, bigger, better
- UK Infrastructures bid for EIC

- Glasgow component to investigate timepix detectors for potential use at EIC
- Could timepix4 have a role at EIC?

Glasgow Participants

Daria SokhanLeader of Glasgow EIC activities.Derek GlazierSimulation and analysis toolsKen LivingstonDetector development, applications of Timepix3 and readout development.Simon GardnerDetector development, simulation, analysis - Timepix3 polarimeterDima ManueskiTimepix / Medipix expert

EIC smear fast simulations

Example ep \rightarrow ep $\pi^+\pi^-$

Take virtual photon flux for escattering Take t-slope = 4 GeV for meson production

Use eic_smear Handbook detector

Add Far Forward ion region Roman Pot $0.002 \rightarrow 0.004$ rad + B0 $0.007 \rightarrow 0.025$ rad

Add Low Q2 tagger 0.001→0.008 rad

EIC smear fast simulations

Generated Events Reconstructed 4 particles With LowQ2 tagger

FF Ion is essential for detection of protons

e- detection to 178.5° With calorimeter in handbook How realistic ?

Low Q2 tagger can significantly Increase yield