New results from a measurement of 12C+p reactions performed at the JINR in Dubna with a 48 GeV/c Carbon-12 beam demonstrate the feasibility of accessing properties of short-range correlated nucleons in nuclei with hadronic probes and by using inverse kinematics.
We extract the ground-state distributions of single nucleons and correlated nucleon pairs (SRC) in quasi-free kinematics in an exclusive measurement by detecting the two scattered protons at large angles in coincidence with an intact heavy fragment. The post-selection of heavy fragments is shown to suppress the otherwise large contributions from final-state interactions. This allowed for the first time to select and study properties of correlated nucleon pairs in inverse kinematics.
This new measurement showcases a new ability to relate short-distance nuclear and partonic dynamics via fragment tagging at the EIC and to study the short-distance structure of short-lived neutron-rich nuclei at the forthcoming FRIB and FAIR facilities.