The prospects for 2y physics with lattice QCD

Brian Tiburzi

14 September, 2014

The City College of New York

A few 2y observables to compute

Electric & Magnetic polarizabilities of pion

• ChPT vs. Experiment:

One Loop ChPT
$$\alpha_{\pi^{+}} = 2.7 [10^{-4} \, \mathrm{fm}^{3}]$$

Contribution to hadronic light-by-light (ingredient in dispersive treatment)

[Engel, et al. PRD (2012), Colangelo, et al. 1402.7081]

Magnetic polarizability of nucleon

- Experiment: 50% 100% uncertainty for neutron?
- ChPT in single and few nucleon systems

[Talks by Philips & Grieβhammer]

- Dominant error in determining nucleon EM splitting
 - [Walker-Loud, Carlson, Miller PRL (2012)]
- Help constrain proton structure corrections to μ-H

[Hill, Paz PRL (2011)]

MAX-lab

[Talks by **Howell** & **Ahmed**]

JLAB Hall D: PR-13-008

Lattice QCD Methods for Hadronic Polarizabilities

$$\alpha_E$$
 β_M

$$U_{\mu}^{\text{e.m.}}(x) = e^{iqA_{\mu}(x)} \in U(1)$$

W. Detmold, B. Tiburzi, A. Walker-Loud

PRD 2006, 2009, 2010

 Determine E&M polarizabilities from QCD by: turning on external fields + study external field dependence of hadronic correlation functions

E.g. neutron in electric field

Hadrons considered

 π^0, K^0, n and π^+, K^+, p

$$E_{\text{eff}} = M + \frac{1}{2}\mathcal{E}^2 \left(\alpha_E - \frac{\mu^2}{4M^3}\right) + \dots$$

Simultaneous fit to boost projected correlators

$$\operatorname{Tr}[\mathcal{P}_{\pm}G(\tau)] = Z\left(1 \pm \frac{\mu \mathcal{E}}{2M_N^2}\right) \exp(-\tau E_{\text{eff}})$$

Anisotropic clover lattices (HadSpec)

$$20^3 imes 128$$
 $m_\pi = 390 \, {
m MeV}$

$$\mu_n = -1.6(1) \left[\mu_N \right]$$

$$m_{\pi}$$

 \boldsymbol{a}

$$\alpha_E^n = 3(1) \times 10^{-4} \, \mathrm{fm}^3$$

STATISTICAL UNCERTAINTIES ONLY **NOT** FOR USE WITH EXPERIMENT

 $q_{\rm sea}$

Magnetic Moments of Light Nuclei

[Beane, et al. 1409.3556]

Proof of principle: lattice QCD computation of Zeeman splittings

$$m_\pi^{
m latt} = 800\,{
m MeV}$$

$$M_N^{\rm latt}=1600\,{\rm MeV}$$

Lattice presents tremendous opportunity:

- Understand interplay between single and few nucleon dynamics from QCD
- Lower pion mass to expose chiral dynamics
- Ultimately confront experiment

