The prospects for 2γ physics with lattice QCD

Brian Tiburzi

14 September, 2014

The City College of New York

Research Center

A few 2γ observables to compute

Electric \& Magnetic polarizabilities of pion

- ChPT vs. Experiment:

One Loop ChPT

$$
\begin{aligned}
& \alpha_{\pi^{+}}=2.7\left[10^{-4} \mathrm{fm}^{3}\right] \\
& \alpha_{\pi^{+}}=1.9(0.7)_{s t .}(0.8)_{s y .}\left[10^{-4} \mathrm{fm}^{3}\right]
\end{aligned}
$$

- Contribution to hadronic light-by-light (ingredient in dispersive treatment) [Engel, et al. PRD (2012), Colangelo, et al. 1402.7081]

Magnetic polarizability of nucleon

- Experiment: 50\%-100\% uncertainty for neutron?
- ChPT in single and few nucleon systems
[Talks by Philips \& Grießhammer]
- Dominant error in determining nucleon EM splitting
[Walker-Loud, Carlson, Miller PRL (2012)]
- Help constrain proton structure corrections to $\mu-H$
[Hill, Paz PRL (2011)]
Spin polarizabilities, ...
HlyS @

[Talks by Howell \& Ahmed]
- JLAB Hall D: PR-13-008

EFT
$n \rightarrow \pi^{-}+p \rightarrow n$

Lattice QCD Methods for Hadronic Polarizabilities

W. Detmold, B. Tiburzi, A. Walker-Loud PRD 2006, 2009, 2010

- Determine E\&M polarizabilities from QCD by: turning on external fields + study external field dependence of hadronic correlation functions
E.g. neutron in electric field

$$
E_{\text {eff }}=M+\frac{1}{2} \mathcal{E}^{2}\left(\alpha_{E}-\frac{\mu^{2}}{4 M^{3}}\right)+\ldots
$$

Simultaneous fit to boost projected correlators
$\operatorname{Tr}\left[\mathcal{P}_{ \pm} G(\tau)\right]=Z\left(1 \pm \frac{\mu \mathcal{E}}{2 M_{N}^{2}}\right) \exp \left(-\tau E_{\text {eff }}\right)$
Anisotropic clover lattices (HadSpec)
$20^{3} \times 128 \quad m_{\pi}=390 \mathrm{MeV}$
$\mu_{n}=-1.6(1)\left[\mu_{N}\right]$
$\alpha_{E}^{n}=3(1) \times 10^{-4} \mathrm{fm}^{3}$

Magnetic Moments of Light Nuclei

Proof of principle: lattice QCD computation of Zeeman splittings $\quad m_{\pi}^{\text {latt }}=800 \mathrm{MeV} \quad M_{N}^{\text {latt }}=1600 \mathrm{MeV}$

Lattice presents tremendous opportunity:

- Understand interplay between single and few nucleon dynamics from QCD
- Lower pion mass to expose chiral dynamics
- Ultimately confront experiment

