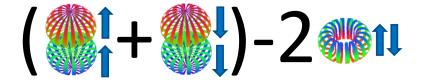

Property of spin-1 nuclei

09/13/2014

DNP Long-Range Plan Meeting Elena Long <ellie@jlab.org>


Property of spin-1 nuclei

Property of spin-1 nuclei

Vector $P_z = p_+ - p_-$

Tensor $P_{zz} = (p_+ + p_-) - 2p_0$

Property of spin-1 nuclei

Vector $P_z = p_+ - p_-$

Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

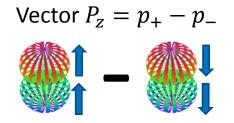
Property of spin-1 nuclei

Vector $P_z = p_+ - p_-$

Tensor
$$P_{zz} = (p_+ + p_-) - 2p_0$$

Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

Of all tensor observables, currently only elastic t_{20} is well measured^[1]


09/13/2014

^[1] IA Rachek *et al*, PRL **98**, 182303 (2007)
 ^[2] P Hoodbhoy *et al*, Nucl. Phys. **B312**, 571 (1989)

Tensor Spin Observables

New tensor structure functions^[2]

 b_1, b_2, b_3, b_4

Property of spin-1 nuclei

Tensor
$$P_{zz} = (p_+ + p_-) - 2p_0$$

Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

Of all tensor observables, currently only elastic t_{20} is well measured^[1]

09/13/2014

Tensor Spin Observables

Property of spin-1 nuclei

Vector
$$P_z = p_+ - p_-$$

New tensor structure functions^[2]

 b_1, b_2, b_3, b_4

 $b_1 = \frac{q^0(x) - q^{\pm}(x)}{2}$

$$\left(\begin{array}{c} p_{zz} = (p_{+} + p_{-}) - 2p_{0} \\ p_{zz} = (p_{+} + p_$$

Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

Tensor Structure Function b_1

Of all tensor observables, currently only elastic t_{20} is well measured^[1]

Tensor Spin Observables

Property of spin-1 nuclei

Vector
$$P_z = p_+ - p_-$$

New tensor structure functions^[2]

*b*₁, *b*₂, *b*₃, *b*₄

$$b_1 = \frac{q^0(x) - q^{\pm}(x)}{2}$$

 b_1 allows us to quark distributions dependent on polarization of the nucleus

Tensor
$$P_{zz} = (p_+ + p_-) - 2p_0$$

Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

Tensor Structure Function b_1

Of all tensor observables, currently only elastic t_{20} is well measured^[1]

Tensor Spin Observables

Property of spin-1 nuclei

Vector
$$P_z = p_+ - p_-$$

New tensor structure functions^[2]

*b*₁, *b*₂, *b*₃, *b*₄

$$b_1 = \frac{q^0(x) - q^{\pm}(x)}{2}$$

 b_1 allows us to quark distributions dependent on polarization of the nucleus

Tensor Structure Function b_1

Tensor $P_{zz} = (p_++p_-) - 2p_0$ $\left(\begin{array}{c} p_+ + p_- \\ p_- \end{array} \right) - 2 \begin{array}{c} p_+ \\ p_- \end{array} \right)$

Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

Of all tensor observables, currently only elastic t_{20} is well measured^[1]

09/13/2014

0.012 0.01 0.008 Sargsian (lc) 0.006 Sargsian (vn) Miller (One π Exch.) 0.004 0.002 9 Contraction of the local distance of the loc -0.002-0.004 -0.006 -0.008-0.01-0.012 0.2 0.3 0.4 0.5 0.6 0.1 0 x

DNP Long-Range Plan Meeting

 ^{2}H

=

Elena Long <ellie@jlab.org>

= 0

1

Tensor Spin Observables

Property of spin-1 nuclei

Vector
$$P_z = p_+ - p_-$$

Tensor $P_{zz} = (p_+ + p_-) - 2p_0$

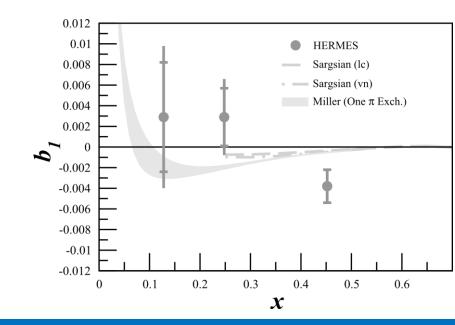
Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

Of all tensor observables, currently only elastic t_{20} is well measured^[1]

New tensor structure functions^[2]

*b*₁, *b*₂, *b*₃, *b*₄

$$b_1 = \frac{q^0(x) - q^{\pm}(x)}{2}$$


 b_1 allows us to quark distributions dependent on polarization of the nucleus

Conventional nuclear physics models can't reproduce HERMES data

 ^{2}H

=

Tensor Structure Function b_1

DNP Long-Range Plan Meeting

Elena Long <ellie@jlab.org>

= 0

^[1] IA Rachek *et al*, PRL **98**, 182303 (2007)
 ^[2] P Hoodbhoy *et al*, Nucl. Phys. **B312**, 571 (1989)

Tensor Spin Observables

^[4] G Miller, Phys. Rev. **C89**, 045203 (2014)

Property of spin-1 nuclei

Vector
$$P_z = p_+ - p_-$$

Tensor
$$P_{zz} = (p_++p_-) - 2p_0$$

Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

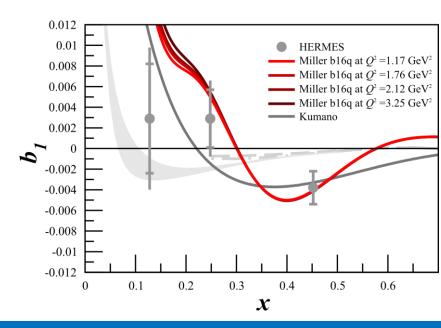
Of all tensor observables, currently only elastic t_{20} is well measured^[1]

New tensor structure functions^[2]

*b*₁, *b*₂, *b*₃, *b*₄

$$b_1 = \frac{q^0(x) - q^{\pm}(x)}{2}$$

 b_1 allows us to quark distributions dependent on polarization of the nucleus


 ^{2}H

=

Conventional nuclear physics models can't reproduce HERMES data Only introducing hidden color effects has been able to

Tensor Structure Function b_1

6-quark hidden color^[4]

09/13/2014

DNP Long-Range Plan Meeting

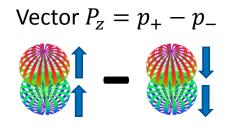
Elena Long <ellie@jlab.org>

= 0

1

09/13/2014

DNP Long-Range Plan Meeting


Elena Long <ellie@jlab.org>

= 0

^[4] G Miller, Phys. Rev. **C89,** 045203 (2014)

IA Rachek *et al*, PRL **98**, 182303 (2007)
 P Hoodbhoy *et al*, Nucl. Phys. **B312**, 571 (1989)
 FE Close, S Kumano, Phys. Rev. **D42**, 2377 (1990)

Property of spin-1 nuclei

Tensor $P_{zz} = (p_+ + p_-) - 2p_0$

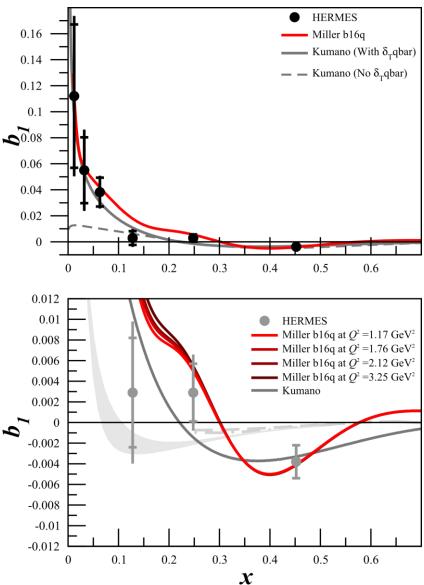
Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

Of all tensor observables, currently only elastic t_{20} is well measured^[1]

Tensor Spin Observables

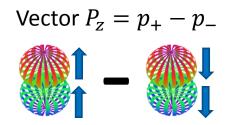
New tensor structure functions^[2] b_1, b_2, b_3, b_4

$$b_1 = \frac{q^0(x) - q^{\pm}(x)}{2}$$

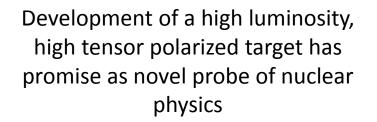

 b_1 allows us to quark distributions dependent on polarization of the nucleus

 ^{2}H

Conventional nuclear physics models can't reproduce HERMES data Only introducing hidden color effects has been able to


Tensor Structure Function b_1

Close-Kumano sum rule^[3] 6-quark hidden color^[4]



^[1] IA Rachek et al, PRL 98, 182303 (2007) ^[2] P Hoodbhoy et al, Nucl. Phys. **B312**, 571 (1989) ^[3] FE Close, S Kumano, Phys. Rev. **D42**, 2377 (1990)

Property of spin-1 nuclei

Tensor
$$P_{zz} = (p_+ + p_-) - 2p_0$$

Of all tensor observables, currently only elastic t_{20} is well measured^[1]

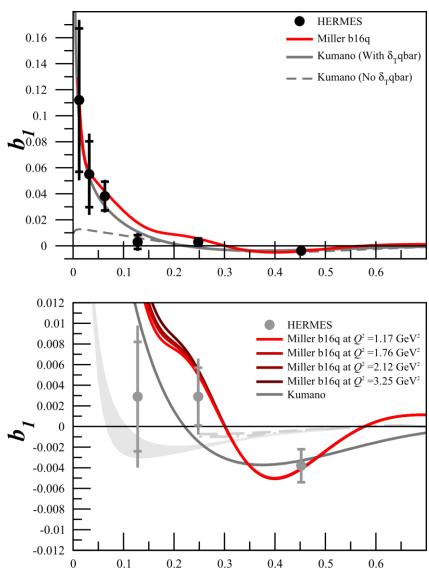
Tensor Spin Observables

New tensor structure functions^[2]

 b_1, b_2, b_3, b_4

$$b_1 = \frac{q^0(x) - q^{\pm}(x)}{2}$$

 b_1 allows us to quark distributions dependent on polarization of the nucleus


 ^{2}H = 0

Conventional nuclear physics models can't reproduce HERMES data Only introducing hidden color effects has been able to

Tensor Structure Function b_1

Close-Kumano sum rule^[3] 6-quark hidden color^[4] OAM and spin crisis^[5] Pionic effects^[4,6] Polarized sea quarks^[6]

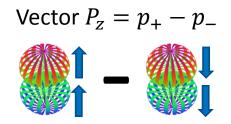
^[4] G Miller, Phys. Rev. C89, 045203 (2014) ^[5] SK Taneja et al, Phys. Rev. D86, 036008 (2012) ^[6] S Kumano, Phys. Rev. **D82**, 017501 (2010)

09/13/2014

DNP Long-Range Plan Meeting

Elena Long <ellie@jlab.org>

0.1


X

0.5

0.6

IA Rachek *et al*, PRL **98**, 182303 (2007)
 P Hoodbhoy *et al*, Nucl. Phys. **B312**, 571 (1989)
 FE Close, S Kumano, Phys. Rev. **D42**, 2377 (1990)

Property of spin-1 nuclei

Tensor
$$P_{zz} = (p_+ + p_-) - 2p_0$$

Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

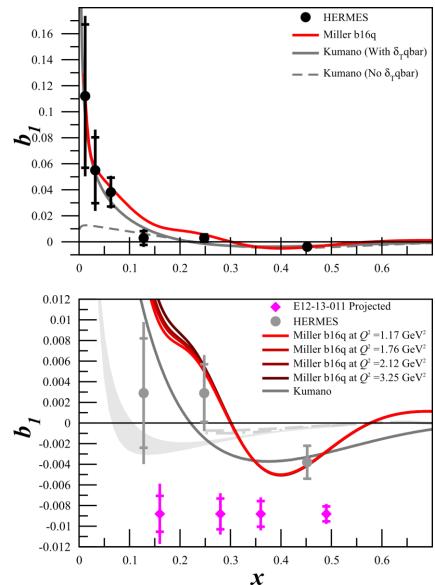
Of all tensor observables, currently only elastic t_{20} is well measured^[1]

Tensor Spin Observables

New tensor structure functions^[2]

*b*₁, *b*₂, *b*₃, *b*₄

$$b_1 = \frac{q^0(x) - q^{\pm}(x)}{2}$$


 b_1 allows us to quark distributions dependent on polarization of the nucleus

Conventional nuclear physics models can't reproduce HERMES data Only introducing hidden color effects has been able to

 ^{2}H

JLab E12-13-011, A- Rating, C1 Approved Tensor Structure Function b_1

Close-Kumano sum rule^[3] 6-quark hidden color^[4] OAM and spin crisis^[5] Pionic effects^[4,6] Polarized sea quarks^[6] ^[4] G Miller, Phys. Rev. **C89**, 045203 (2014)
^[5] SK Taneja *et al*, Phys. Rev. **D86**, 036008 (2012)
^[6] S Kumano, Phys. Rev. **D82**, 017501 (2010)

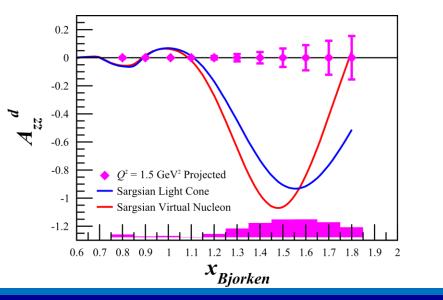
09/13/2014

DNP Long-Range Plan Meeting

Elena Long <ellie@jlab.org>

= 0

JLab LOI12-14-002: Tensor Asymmetry

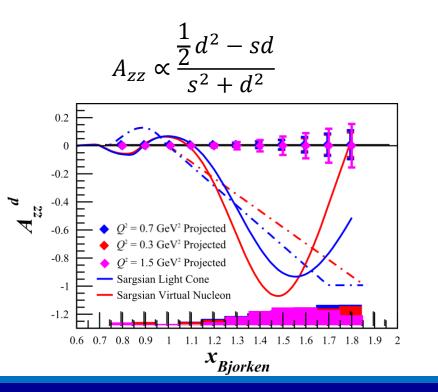

 A_{zz} in the x > 1 Region

JLab LOI12-14-002: Tensor Asymmetry

 A_{zz} in the x > 1 Region Similar to t_{20} , but in QE

JLab LOI12-14-002: Tensor Asymmetry

 A_{zz} in the x > 1 Region Similar to t_{20} , but in QE SRCs & pn dominance^[1] Differentiate light cone and VN models^[2]

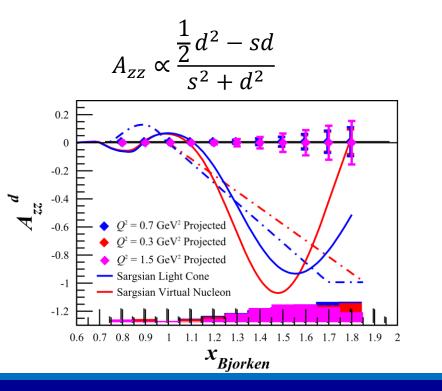

[1] J Arrington *et al*, Prog. Part. Nucl. Phys. **67**, 898 (2012)
 [2] M. Sargsian, private communication

09/13/2014

DNP Long-Range Plan Meeting

JLab LOI12-14-002: Tensor Asymmetry

 A_{zz} in the x > 1 Region Similar to t_{20} , but in QE SRCs & pn dominance^[1] Differentiate light cone and VN models^[2] Better understanding of s/d^[3]

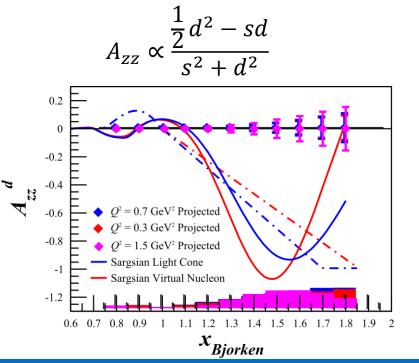

^[1] J Arrington *et al*, Prog. Part. Nucl. Phys. **67**, 898 (2012)
 ^[2] M. Sargsian, private communication
 ^[3] L Frankfurt, M Strikman, Phys. Rept. **160**, 235

09/13/2014

DNP Long-Range Plan Meeting

JLab LOI12-14-002: Tensor Asymmetry

 A_{zz} in the x > 1 Region Similar to t_{20} , but in QE SRCs & pn dominance^[1] Differentiate light cone and VN models^[2] Better understanding of s/d^[3] Final state interaction models^[4]


^[1] J Arrington *et al*, Prog. Part. Nucl. Phys. **67**, 898 (2012)
^[2] M. Sargsian, private communication
^[3] L Frankfurt, M Strikman, Phys. Rept. **160**, 235
^[4] W Cosyn, M Sargsian, arXiv:1407.1653

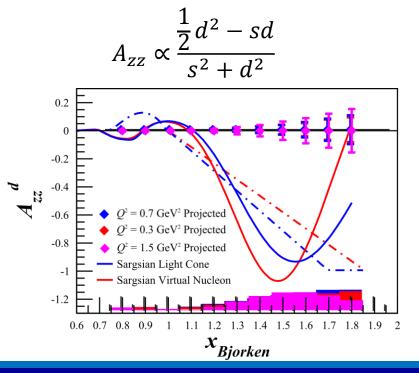
09/13/2014

DNP Long-Range Plan Meeting

JLab LOI12-14-002: Tensor Asymmetry

 $\begin{array}{l} A_{zz} \text{ in the } x > 1 \text{ Region} \\ \text{Similar to } t_{20}, \text{ but in QE} \\ \text{SRCs \& pn dominance}^{[1]} \\ \text{Differentiate light cone and VN models}^{[2]} \\ \text{Better understanding of s/d}^{[3]} \\ \text{Final state interaction models}^{[4]} \\ \text{Encouraged for full submission by PAC42} \end{array}$

"The measurement proposed here arises from a well-developed context, presents a clear objective, and enjoys strong theory support. It would further explore the nature of short-range *pn* correlations in nuclei, the discovery of which has been one of the most important results of the JLab 6 GeV nuclear program." -JLab PAC42 Theory Advisory Committee


^[1] J Arrington *et al*, Prog. Part. Nucl. Phys. **67**, 898 (2012)
^[2] M. Sargsian, private communication
^[3] L Frankfurt, M Strikman, Phys. Rept. **160**, 235
^[4] W Cosyn, M Sargsian, arXiv:1407.1653

09/13/2014

DNP Long-Range Plan Meeting

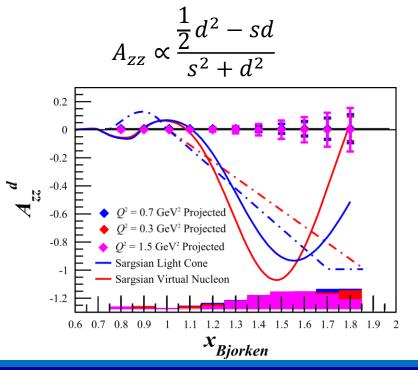
JLab LOI12-14-002: Tensor Asymmetry

 $\begin{array}{l} A_{zz} \text{ in the } x > 1 \text{ Region} \\ \text{Similar to } t_{20} \text{, but in QE} \\ \text{SRCs \& pn dominance}^{[1]} \end{array} \\ \begin{array}{l} \text{Differentiate light cone and VN models}^{[2]} \\ \text{Better understanding of s/d}^{[3]} \\ \text{Final state interaction models}^{[4]} \end{array} \\ \begin{array}{l} \text{Encouraged for full submission by PAC42} \end{array} \end{array}$

"The measurement proposed here arises from a well-developed context, presents a clear objective, and enjoys strong theory support. It would further explore the nature of short-range *pn* correlations in nuclei, the discovery of which has been one of the most important results of the JLab 6 GeV nuclear program." -JLab PAC42 Theory Advisory Committee

JLab LOI12-14-001: Search for Exotic Gluonic States in the Nucleus

 b_4 in x < 0.3 region Insensitive to bound nucleons or pions^[5] Any non-zero value indicates exotic gluonic components^[5] Encouraged for full submission by PAC42


^[1] J Arrington *et al*, Prog. Part. Nucl. Phys. **67**, 898 (2012)
^[2] M. Sargsian, private communication
^[3] L Frankfurt, M Strikman, Phys. Rept. **160**, 235
^[4] W Cosyn, M Sargsian, arXiv:1407.1653
^[5] R Jaffe, A Manohar, Phys. Lett. **B223**, 218 (1989)

09/13/2014

DNP Long-Range Plan Meeting

JLab LOI12-14-002: Tensor Asymmetry

 $\begin{array}{l} A_{zz} \text{ in the } x > 1 \text{ Region} \\ \text{Similar to } t_{20}, \text{ but in QE} \\ \text{SRCs & pn dominance}^{[1]} \end{array} \\ \begin{array}{l} \text{Differentiate light cone and VN models}^{[2]} \\ \text{Better understanding of s/d}^{[3]} \\ \text{Final state interaction models}^{[4]} \end{array} \\ \begin{array}{l} \text{Encouraged for full submission by PAC42} \end{array} \end{array}$

"The measurement proposed here arises from a well-developed context, presents a clear objective, and enjoys strong theory support. It would further explore the nature of short-range *pn* correlations in nuclei, the discovery of which has been one of the most important results of the JLab 6 GeV nuclear program." -JLab PAC42 Theory Advisory Committee

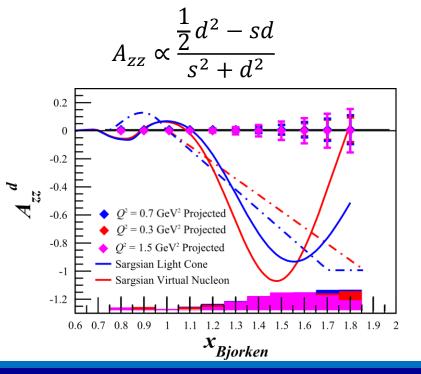
JLab LOI12-14-001: Search for Exotic Gluonic States in the Nucleus

 b_4 in x < 0.3 region Insensitive to bound nucleons or pions^[5] Any non-zero value indicates exotic gluonic components^[5] Encouraged for full submission by PAC42

^[1] J Arrington *et al*, Prog. Part. Nucl. Phys. **67**, 898 (2012)
^[2] M. Sargsian, private communication
^[3] L Frankfurt, M Strikman, Phys. Rept. **160**, 235
^[4] W Cosyn, M Sargsian, arXiv:1407.1653
^[5] R Jaffe, A Manohar, Phys. Lett. **B223**, 218 (1989)

Future of Tensor Measurements

Approved measurement of b_1 2 upcoming proposals 4 structure functions to explore Many more ideas from Tensor Workshop Ample opportunities for exploration



09/13/2014

DNP Long-Range Plan Meeting

JLab LOI12-14-002: Tensor Asymmetry

 $\begin{array}{l} A_{zz} \text{ in the } x > 1 \text{ Region} \\ \text{Similar to } t_{20}, \text{ but in QE} \\ \text{SRCs & pn dominance}^{[1]} \end{array} \\ \begin{array}{l} \text{Differentiate light cone and VN models}^{[2]} \\ \text{Better understanding of s/d}^{[3]} \\ \text{Final state interaction models}^{[4]} \end{array} \\ \begin{array}{l} \text{Encouraged for full submission by PAC42} \end{array} \end{array}$

"The measurement proposed here arises from a well-developed context, presents a clear objective, and enjoys strong theory support. It would further explore the nature of short-range *pn* correlations in nuclei, the discovery of which has been one of the most important results of the JLab 6 GeV nuclear program." -JLab PAC42 Theory Advisory Committee

JLab LOI12-14-001: Search for Exotic Gluonic States in the Nucleus

 b_4 in x < 0.3 region Insensitive to bound nucleons or pions^[5] Any non-zero value indicates exotic gluonic components^[5] Encouraged for full submission by PAC42

^[1] J Arrington *et al*, Prog. Part. Nucl. Phys. **67**, 898 (2012)
^[2] M. Sargsian, private communication
^[3] L Frankfurt, M Strikman, Phys. Rept. **160**, 235
^[4] W Cosyn, M Sargsian, arXiv:1407.1653
^[5] R Jaffe, A Manohar, Phys. Lett. **B223**, 218 (1989)

Future of Tensor Measurements

Approved measurement of b_1 2 upcoming proposals 4 structure functions to explore Many more ideas from Tensor Workshop Ample opportunities for exploration

Ideas to probe novel nuclear effects through tensor structure are growing rapidly. It is paramount that a high luminosity, high tensor polarization target be developed to make these experiments possible

09/13/2014

DNP Long-Range Plan Meeting