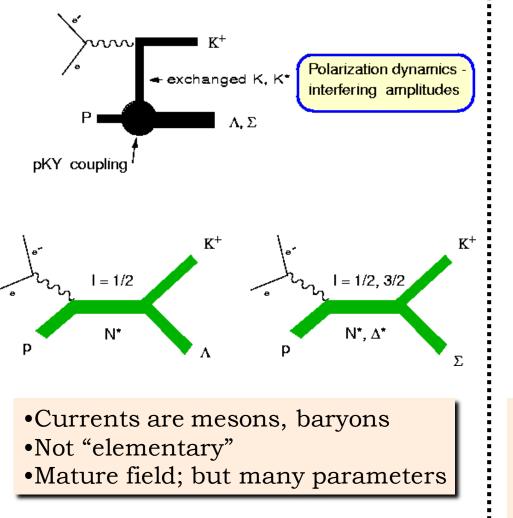
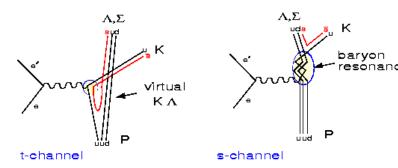
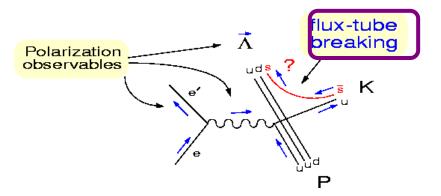
Understanding $q\bar{q}$ Creation Mac Mestayer


Does the quark model work for exclusive production? - compared to an hadronic current approach.

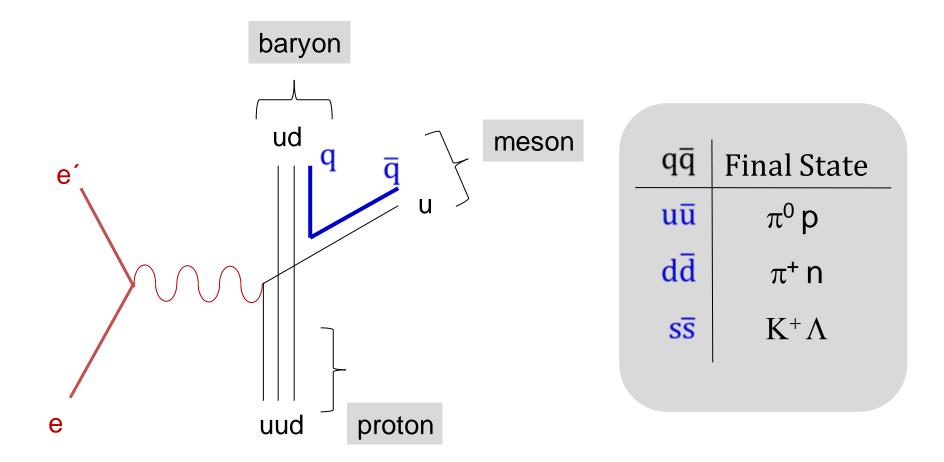

What are 'constituent quarks'?


What is the 'flux-tube'?

How do $q\bar{q}$ pairs 'break' or 'neutralize' the color force-field? What is the flavor dependence? What is the angular momentum structure?

How to describe exclusive production ? hadrons or quarks ?

- Currents are constituent quarks
 Not "elementary" either !
- •Successes in meson decays; not as much work on production


"Strangeness Suppression in $q\bar{q}$ Creation Observed in Exclusive Production" *

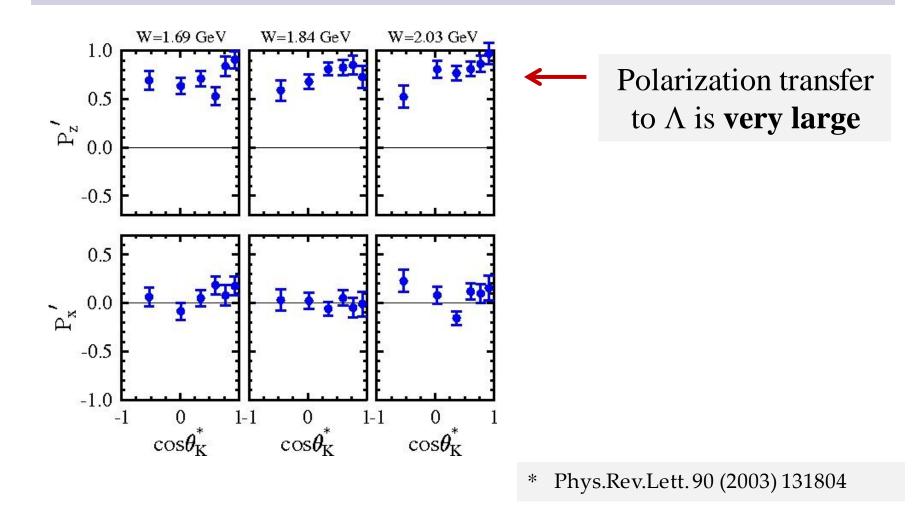
Mac Mestayer, Kijun Park & CLAS Collaboration

- What did we measure ?
 - ratio of electro-production cross-sections for 2-body (baryon-meson) final states: $K^+\Lambda$, π^+n and π^0p
 - ratio of processes in which only one $q\overline{q}$ pair is produced
 - in a quark model picture, the ratios are proportional to the relative production rates of $s\overline{s}$, $d\overline{d}$, or $u\overline{u}$
- What was the physics conclusion?
 - that $s\bar{s}$ production is suppressed relative to $d\bar{d}$ and $u\bar{u}$
 - suppression factor may be universal

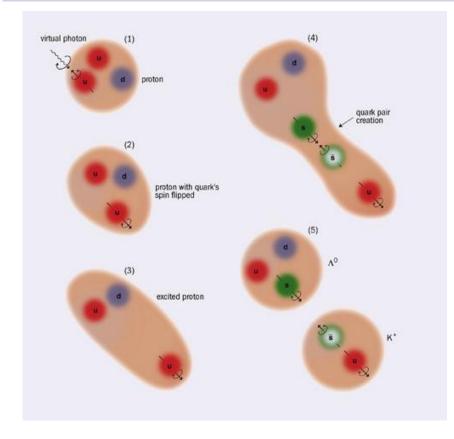
* accepted for publication in Phys. Rev. Lett.

Exclusive Baryon Meson Production - quark model picture

Strangeness Suppression Results


Experimental Ratio Used	$s\overline{s}/d\overline{d}$
$\Lambda K^+/n\pi^+$	0.19 +/- 0.03
$\Lambda K^+/p\pi^0$ "a"	0.22 +/- 0.07
$\Lambda K^+/p\pi^0$ "b"	0.28 +/- 0.07

"a" \rightarrow assume $u\bar{u}/d\bar{d}=0.74$ "b" \rightarrow assume $u\bar{u}/d\bar{d}=1$


Strangeness suppression is ~same in the exclusive limit as it is at the Z mass \rightarrow suggests that it is a **universal phenomenon**?

- what are the dynamics ?

Polarization Transfer in $\vec{e}p \rightarrow K^+ \vec{\Lambda}^*$

Λ – polarization and $q\bar{q}$ Spin State

CERN Cour. June, 2003 * CERN Cour. September, 2007 **

Simple quark reaction process: Two-step process

- polarized $\gamma \rightarrow$ polarized u-quark
- scalar $K^+ \rightarrow$ polarized \bar{s} quark
- observed Λ polarization $\rightarrow s\bar{s}$ in spin-0 state

Not consistent with ${}^{3}P_{0}$??

- * "Jlab results put new spin on the vacuum"
- ** "Polarized hyperons probe dynamics of quark spin"

Conclusions and Future Studies

- Can simple quark dynamics explain low-energy phenomena ?
 is qq creation a universal phenomenon ?
 early evidence says yes to both
- Is $u\overline{u} = d\overline{d}$? (our data show 0.74 +/- 0.18) - study ratio of $\pi^0 p / \pi^+ n$ from D₂ target
- Can theory explain the dynamics of $q\bar{q}$ creation?
 - what role does angular momentum play ? *
 - study Λ transferred polarization in K* Λ final states
- What other experiments can we do ?
- * "On the Mechanism of Open-Flavor Strong Decays", E.S. Ackleh, T. Barnes, E.S. Swanson, Phys.Rev.D54 (1996) 6811-6829

Sept. 13, 2014

Analysis in brief:

- Detect electron and charged hadron (π^+ , p, or K⁺)
- Bin: Q^2 , W, $\cos\theta$, ϕ
- Identify neutral hadron (n, π⁰ or Λ) by missing mass
 fit (sig. + bkgd.), subtract bkgd., count within cuts
- Corrections to yield
 - efficiency/acceptance, phase-space
- Fit corrected ϕ distribution: ($a + b \cos \phi + c \cos 2\phi$)
- Ratio of constant terms: $K^+\Lambda/\pi^+n$, $\pi^0 p/\pi^+n$, $K^+\Lambda/\pi^0 p$

LUND Model of Hadronization (for electro-production)

- Virtual photon 'knocks' a quark out of the proton
- Quark recoils from the remainder di-quark;
- stretching a 'flux-tube' between them

– energy density ~ 1 GeV/fermi

- A $q\bar{q}$ pair tunnels out of the potential energy well
- Probability $\approx e^{-\pi m^2/k}$
 - -m is the quark mass; k is the flux-tube energy density
- Ratio of $s\overline{s} : d\overline{d} : u\overline{u} \approx 0.3 : 1 : 1$