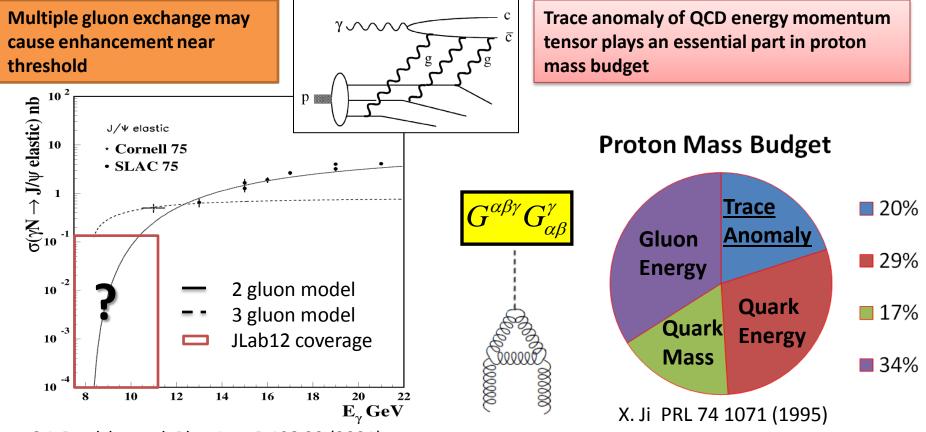
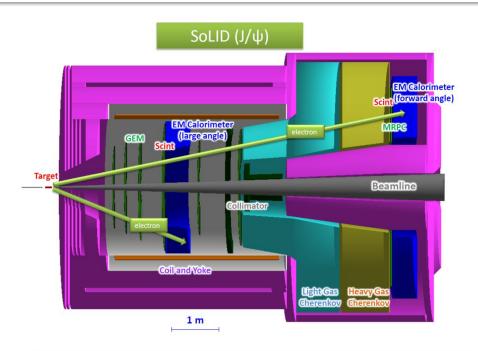


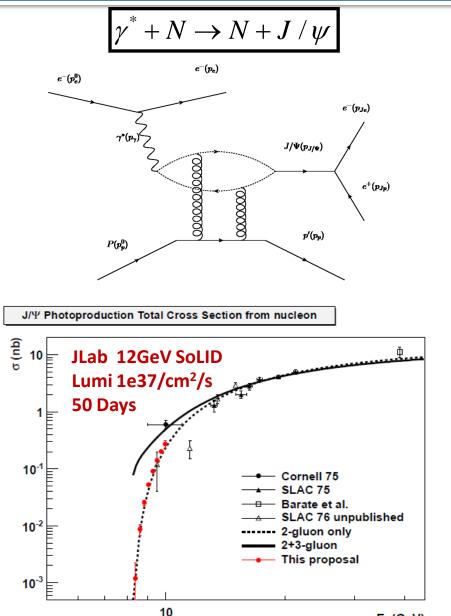
J/ψ Near Threshold Production with SoLID

Zhiwen Zhao (ODU/Jlab) Kawtar Hafidi (ANL),Zein-Eddine Meziani (Temple) Xin Qian (BNL), Nikos Sparveris (Temple)


SoLID Collaboration


J/ψ as a Unique Probe of Strong Color Field in Nucleon

- Probes strong gluonic interaction between two color neutral objects J/ψ and nucleon near threshold
- Models relate J/ ψ production near threshold to trace anomaly and proton mass budget
 - (D. Kharzeev et al Eur. Phys. J. C9 459 (1999), A. Sibirtsev et al. Phys. Rev., D71:076005 (2005))



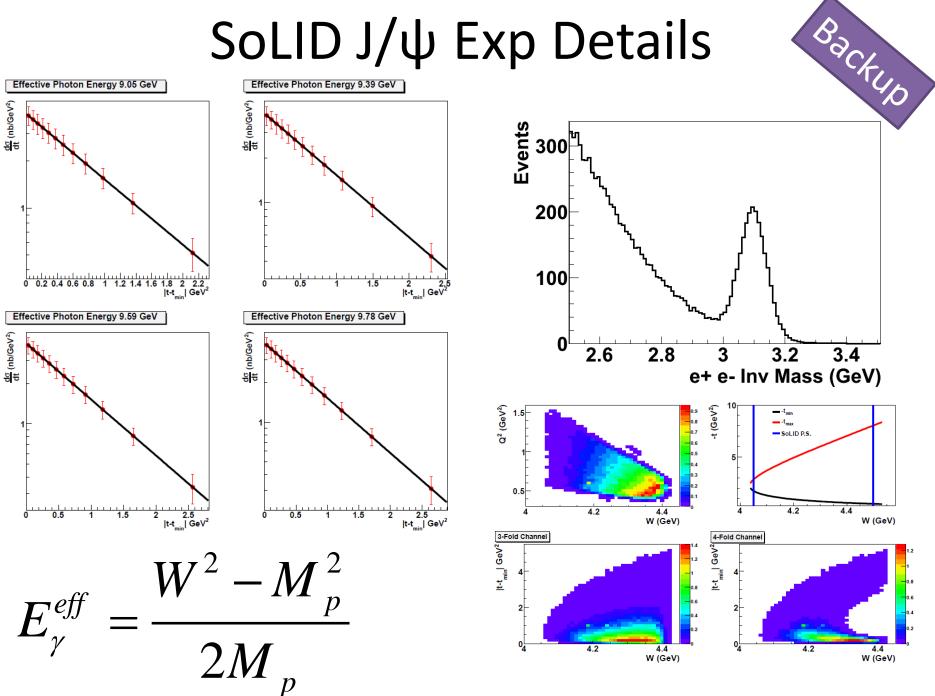
S.J. Brodsky et al. Phys.Lett.B 498 23 (2001) Zhiwen Zhao, SoLID Collaboration, JLab

J/ψ Near Threshold Production with SoLID

- <u>high luminosity & large acceptance</u> capability of SoLID enables a unique "precision" measurement near threshold
- Search for possible enhancement
- Study multiple gluons exchange
- Shed light on the low energy J/ψ-nucleon interaction (color Van der Waals force)
- Shed light on the trace anomaly, an important piece in the proton mass budget

Zhiwen Zhao, SoLID Collaboration, JLab

Trace Anomaly and Proton Mass Budget


D. Kharzeev, H. Satz, A. Syamtomov, and G. Zinovjev, Eur. Phys. J., C9:459-462, 1999

$$\begin{split} \frac{d \sigma_{\gamma N \to \psi N}}{d t}(s,t=0) &= \frac{3\Gamma(\psi \to e^+e^-)}{\alpha m_{\psi}} \left(\frac{k_{\psi N}}{k_{\gamma N}}\right)^2 \frac{d \sigma_{\psi N \to \psi N}}{d t}(s,t=0) \\ \frac{d \sigma_{\psi N \to \psi N}}{d t}(s,t=0) &= \frac{1}{64\pi} \frac{1}{m_{\psi}^2(\lambda^2 - m_N^2)} |\mathcal{M}_{\psi N}(s,t=0)|^2 \\ H_{QCD} &= H_a + H_m + Hg + H_a \\ H_a &= \int d^3 x \frac{9\alpha_s}{16\pi} \left(\mathbf{E}^2 + \mathbf{B}^2\right) \\ H_q &= \int d^3 x \psi^{\dagger}(-i\mathbf{D} \cdot \alpha) \psi \\ H_m &= \int d^3 x \frac{1}{2} \left(\mathbf{E}^2 + \mathbf{B}^2\right) \\ H_a &= \int d^3 x \frac{9\alpha_s}{16\pi} \left(\mathbf{E}^2 - \mathbf{B}^2\right) \\ H_a &= \int d^3 x \frac{9\alpha_s}{16\pi} \left(\mathbf{E}^2 - \mathbf{B}^2\right) \\ H_a &= \int d^3 x \frac{9\alpha_s}{16\pi} \left(\mathbf{E}^2 - \mathbf{B}^2\right) \\ (N | \frac{1}{2} \vec{E}^a \cdot \vec{E}^a | N \rangle \geq \frac{8\pi^2}{b} 2m_N^2, \end{split}$$

X. Ji PRL 74 1071 (1995)

A. Sibirtsev et al. Phys. Rev., D71:076005 (2005)

Zhiwen Zhao, SoLID Collaboration, JLab

Zhiwen Zhao, SoLID Collaboration, JLab