EXPRESSIONS OF CHIRAL DYNAMICS IN HADRONS AND NUCLEI

Daniel Phillips Ohio University

Research supported by the US Department of Energy

M (MeV)

χΡΤ

π 138

- For probe energies~a few hundred MeV, simplifications of the rich QCD dynamics emerge: processes dominated by πs and Δs
- BUT, interplay with other QCD states crucial in detailed comparisons with data
- EFTs provide a way to organize the theory: expansion in $M_{lo}/M_{hi} \rightarrow$ theory uncertainties
- Delineate this interplay precisely
- Possible to obtain high-accuracy hadronic numbers. Key to Intensity Frontier searches for BSM physics and determination of SM parameters.
- Here emphasis on EM probes

χΡΤ

 π — 138

- For probe energies~a few hundred MeV, simplifications of the rich QCD dynamics emerge: processes dominated by πs and Δs
- BUT, interplay with other QCD states crucial in detailed comparisons with data
- EFTs provide a way to organize the theory: expansion in $M_{lo}/M_{hi} \rightarrow$ theory uncertainties
- Delineate this interplay precisely
- Possible to obtain high-accuracy hadronic numbers. Key to Intensity Frontier searches for BSM physics and determination of SM parameters.
- Here emphasis on EM probes

- For probe energies~a few hundred MeV, simplifications of the rich QCD dynamics emerge: processes dominated by π s and Δ s
- BUT, interplay with other QCD states crucial in detailed comparisons with data
- EFTs provide a way to organize the theory: expansion in M_{lo}/M_{hi} → theory uncertainties
- Delineate this interplay precisely
- Possible to obtain high-accuracy hadronic numbers. Key to Intensity Frontier searches for BSM physics and determination of SM parameters.
- Here emphasis on EM probes

The rest of the second se

Picture credits: TUNL, JLab, ORNL

Picture credits: TUNL, JLab, ORNL

A=0: $\pi\pi$ SCATTERING (I=2)

HSC, NPLQCD (2011)

A=0: $\pi\pi$ SCATTERING (I=2)

• Anisotropic $n_f=2+1$ clover. $m_{\pi} \approx 390$ MeV

Several energy levels in the box measured, at different L. Lüscher for δ

A=0: $\pi\pi$ SCATTERING (I=2)

m_πa=0.0417(07)(02)(16)

NA48: m_πa=0.0429(44)(28)

• Anisotropic $n_f=2+1$ clover. $m_{\pi} \approx 390$ MeV

- Several energy levels in the box measured, at different L. Lüscher for δ
- EFT is key to understanding both L- and m_{π} -dependence of LQCD data, and to extraction of scattering length from NA48 data

A=0: $\pi\pi$ SCATTERING (I=2)

m_πa=0.0417(07)(02)(16)

NA48: m_πa=0.0429(44)(28)

Roy equations: $m_{\pi}a=0.0444(1)$

Colangelo, Gasser, Leutwyler (2001)

• Anisotropic $n_f=2+1$ clover. $m_{\pi} \approx 390$ MeV

- Several energy levels in the box measured, at different L. Lüscher for δ
- EFT is key to understanding both L- and m_{π} -dependence of LQCD data, and to extraction of scattering length from NA48 data

$\gamma\gamma \rightarrow \pi\pi$ AND π POLARIZABILITIES

- Roy equations=dispersion relations + partial-wave expansion + crossing symmetry + unitarity⇒Coupled set of equations for partial-wave amplitudes
- Ensuring low-energy amplitude matches to χ PT and using data at energies > I GeV as input gives accurate $\pi\pi$ phase shifts over a wide energy range
- Sigma resonance pole position: $M_{\sigma} = 441^{+16}_{-8} \text{MeV}; \quad \Gamma_{\sigma} = 554^{+18}_{-25} \text{MeV}$ Caprini, Colangelo, Leutwyler (2006)

• Roy-Steiner equations for $\gamma\gamma \rightarrow \pi\pi$. Subtractions suppress left-hand cut

 χ PT input for π polarizabilities \Rightarrow $\Gamma_{\sigma\gamma\gamma} = (1.7 \pm 0.4) \text{ keV}$

COMPASS:

 $\alpha_{\pi} = (1.9 \pm 0.7_{\text{stat.}} \pm 0.8_{\text{sys.}}) \times 10^{-4} \text{ fm}^3$

JLab Hall D: PR-13-008, A- rating Spokesperson: R. Miskimen (U. Mass.)

DOING BETTER ON HADRONIC LBL

Data + dispersion relations with chiral constraints

UNCERTAINTY QUANTIFICATION

• Reconstruction of $\gamma^* \gamma^* \rightarrow \pi \pi, \pi^0$: combine experiment and theory constraints

- Next step: η, η', KKbar, multi-pion channels, pQCD constraints for high energy
- Measured resonance parameters play a key role in constraining this analysis

PRIMEX AND PRIMEX-II

Picture credit: PRIMEX

Fixes normalization of pion transition form-factor: input for hadronic LbL

•
$$\chi$$
PT at O(p⁴): $\Gamma(\pi^0 \to \gamma \gamma) = \frac{\alpha_{em}^2 N_c^2 m_{\pi}^3}{576\pi^3 f_{\pi}^2} = 7.725 \text{ eV}$

• O(p⁶) χ PT: $\Gamma(\pi^0 \to \gamma\gamma) = (8.10 \pm 0.08) \text{ eV}$

• PRIMEX: $\Gamma(\pi^0 \to \gamma \gamma) = (7.82 \pm 0.17_{\text{stat.}} \pm 0.16_{\text{syst.}}) \text{ eV}$

PRIMEX-II to shrink error bar by factor of 2

THE JLAB ETA FACTORY

Picture credits: JEF proposal

- JEF will improve limits on rare C-violating η decays
- Improved $(m_d-m_u)/m_s$ from $\eta \rightarrow 3\pi$: precise determination of SM parameter
- Go beyond naive χPT expansion: unitarization.

FUTURE OPPORTUNITIES: A=0

- Two-loop [O(p⁶)] χPT for π properties now standard; high-accuracy calculations routine.
- Convergence in SU(3) not as good. Uncertainty quantification a challenge for initial states with M~I GeV.
- Increasingly precise LQCD numbers for pion dynamics, at lower pion masses
- A=0 resonances from LQCD: ρ, strange states,
- Dispersion relations/unitarized ChiPT/models will connect both experiment and lattice to resonance properties.
- Dispersion relations for HLbL: follow the roadmap
- I2 GeV JLab: PRIMEX-II, π polarizability, η factory

Picture credits: R. Miskimen, J. Dudek et al.

A=I: MOSTLY COMPTON

- Traditionally: "tests of chiral symmetry" in near-threshold pion photoproduction
- Emergent dynamics of strong QCD, but why these matrix elements?
- Here emphasis is on Compton scattering, especially the quest to measure electromagnetic polarizabilities of the proton (neutron in A=2 section)
 - Probe chiral dynamics below pion threshold
 - LQCD error bars commensurate with experiment→TIBURZI
 - Key inputs in forefront SM parameter extractions and tests: M_n - M_p , μ H, ...
- Ability to quantify theory uncertainty is key to reliable extraction of hadronic matrix elements

STATIC AND DYNAMIC POLARIZABILITIES

Picture credit: H. Grießhammer

$$H = -2\pi [\alpha_{E1}\mathbf{E}^2 + \beta_{M1}\mathbf{B}^2 + \ldots]$$

STATIC AND DYNAMIC POLARIZABILITIES

But χ PT predicts entire energy dependence of amplitudes, so define: $H = -2\pi [\alpha_{E1}(\omega)\mathbf{E}^{2} + \beta_{M1}(\omega)\mathbf{B}^{2} + \gamma_{E1E1}(\omega)\sigma \cdot (\mathbf{E} \times \dot{\mathbf{E}}) + \gamma_{M1M1}(\omega)\sigma \cdot (\mathbf{B} \times \dot{\mathbf{B}}) - 2\gamma_{M1E2}(\omega)\sigma_{i}B_{j}E_{ij} + 2\gamma_{E1M2}(\omega)\sigma_{i}E_{j}B_{ij} + \dots]$

Numerically: six dynamical polarizabilities reproduce Compton observables up to 300 MeV to a few per cent: partial-wave analysis of γp (Was made rigorous via multipole expansion of different invariant amplitudes.)

DYNAMICAL POLARIZABILITIES

Grießhammer, McGovern, Phillips, Feldman

Remarkable concordance of various theories on energy dependence of dynamical polarizabilities below 200 MeV.
Grießhammer, L'vov, McGovern, Pascalutsa, Pasquini, Phillips, arXiv:1409.1512

Suggests: (a) experiments should be done in this regime in order to minimize theory uncertainties; (b) best to fit all six static pols to experiment.

NEW ANALYSIS OF γ -proton data

Ingredients: χ PT N π loops up to O(P⁴) + Dynamical Δ + $\Delta\pi$ loops + Δ width and dressed $\gamma N\Delta$ vertex [up to O(e² δ^4)]: three free parameters

• Good reproduction of data up to \approx 350 MeV

Develop world database up to 200 MeV (incl. treatment of systematic errors). Greater theory accuracy compared to Δ region (N⁴LO vs NLO).

Fit to world γp data up to 170 MeV: χ^2 /d.o.f.=110.5/134 $\alpha_{E1}^{(\mathrm{p})}$

 $10.65 \pm 0.35(\text{stat}) \pm 0.2(\text{Baldin}) \pm 0.3(\text{theory});$

 $\beta_{M1}^{(\mathrm{p})}$ $3.15 \mp 0.35(\text{stat}) \pm 0.2(\text{Baldin}) \mp 0.3(\text{theory})$ McGovern, Grießhammer, Phillips (2013)

• $\beta_{MI}^{(p)}$ markedly higher than in previous (DR) fits (although marginally consistent within error bars)

SPIN POLARIZABILITIES

Picture credits: R. Miskimen

- $H = -2\pi [\gamma_{E1E1}\sigma \cdot (\mathbf{E} \times \dot{\mathbf{E}}) + \gamma_{M1M1}\sigma \cdot (\mathbf{B} \times \dot{\mathbf{B}}) 2\gamma_{M1E2}\sigma_i B_j E_{ij} + 2\gamma_{E1M2}\sigma_i E_j B_{ij} + \dots]$
- Response of degrees of freedom that carry nucleon spin to E and B fields
- LQCD results in progress → **TIBURZI**

	χEFT	Fixed-t DR	Experiment
E1 E1	-1.1±1.8	-3.85±0.45	-3.5±0.12
M1 M1	$2.2 \pm 0.5 \pm 0.7$	2.8±0.1	3.16±0.85
E1 M2	-0.4±0.4	-0.15±0.15	-0.7±1.2
E2 M1	1.9±0.4	2.0±0.1	1.99±0.29

Spin polarizabilities, all in units of 10⁻⁴ fm⁴

Future at MAMI:measurements of Σ_{2z}, Σ₃.Full multipole analysis ofsuite of Comptonobservables

Future at HIGS: low-energy

SPIN POLARIZABILITIES

Picture credits: R. Miskimen

- $H = -2\pi [\gamma_{E1E1}\sigma \cdot (\mathbf{E} \times \dot{\mathbf{E}}) + \gamma_{M1M1}\sigma \cdot (\mathbf{B} \times \dot{\mathbf{B}}) 2\gamma_{M1E2}\sigma_i B_j E_{ij} + 2\gamma_{E1M2}\sigma_i E_j B_{ij} + \dots]$
- Response of degrees of freedom that carry nucleon spin to E and B fields
- LQCD results in progress → TIBURZI

	χEFT	Fixed-t DR	Experiment
E1 E1	-1.1±1.8	-3.85±0.45	-3.5±0.12
M1 M1	$2.2 \pm 0.5 \pm 0.7$	2.8±0.1	3.16±0.85
E1 M2	-0.4 ± 0.4	-0.15±0.15	-0.7±1.2
E2 M1	1.9±0.4	2.0±0.1	1.99±0.29

Spin polarizabilities, all in units of 10⁻⁴ fm⁴

FUTURE: A = I

Picture credits: A. Alexandru et al., Chiral MAID

Input for polarizability correction to extraction of r_{p} from μH

FUTURE: A=I

- Compton:
 - Lattice results: α , β , γ s
 - First asymmetry data below 200 MeV
 - High-accuracy extraction of γ's

MAMI, HIGS

- Resolution of high/low β_{MI}^(p) issue via precision experiment and theory Input for polarizability correction to extraction of r_p from μH
- Analyses of higher-energy data: combination of χPT and DR. Multipole analysis Role of 0⁺⁺ exchange in t-channel
- VCS is a largely unexplored frontier \rightarrow probe spatial distribution of α , β , γ s

FUTURE: A=I

- Compton:
 - Lattice results: α , β , γ s
 - First asymmetry data below 200 MeV
 - High-accuracy extraction of γ's

- Analyses of higher-energy data: combination of χPT and DR. Multipole analysis Role of 0⁺⁺ exchange in t-channel
- VCS is a largely unexplored frontier \rightarrow probe spatial distribution of α , β , γ s
- Pion photo- and electro-production
 - New results from MAMI (US involvement!); analysis of Hall A data in progress
 - Chiral MAID: need to add $\Delta(1232)$ d.o.f.

Picture credits: A. Alexandru et al., Chiral MAID

FUTURE: A=I

- Compton:
 - Lattice results: α , β , γ s
 - First asymmetry data below 200 MeV
 - High-accuracy extraction of γ's

- Analyses of higher-energy data: combination of χPT and DR. Multipole analysis Role of 0⁺⁺ exchange in t-channel
- VCS is a largely unexplored frontier \rightarrow probe spatial distribution of α , β , γ s
- Pion photo- and electro-production
 - New results from MAMI (US involven
 - Chiral MAID: need to add $\Delta(1232)$ d.

MAMI, HIGS

Picture credits: A. Alexandru et al., Chiral MAID

A=2: GETTING AT THE NEUTRON

Picture credits: H. Grießhammer, L. Myers

COMPTON@MAXLAB

- U.S.-U.K.-Sweden collaboration
- Doubled world data-base

 $\alpha_n = 11.65 \pm 1.25 (\text{stat}) \pm 0.2 (\text{BSR}) \pm 0.8 (\text{th})$ $\beta_n = 3.55 \mp 1.25 (\text{stat}) \pm 0.2 (\text{BSR}) \mp 0.8 (\text{th})$

- Hint of $\beta_n > \beta_p$? $\beta_n \beta_p$ presently most uncertain input to $(M_p M_n)^{em}$
- Higher-energy data being analyzed; theory for E_{γ} >m $_{\pi}$ under development
- Consistent with quasi-free $\gamma d \rightarrow \gamma np$
- Future QF: JLAB FEL for ARCS? Theory.
- Future: precision at lower energies; asymmetries → neutron γ's

COMPTON@MAXLAB

- U.S.-U.K.-Sweden collaboration
- Doubled world data-base

 $\alpha_n = 11.65 \pm 1.25 (\text{stat}) \pm 0.2 (\text{BSR}) \pm 0.8 (\text{th})$ $\beta_n = 3.55 \mp 1.25 (\text{stat}) \pm 0.2 (\text{BSR}) \mp 0.8 (\text{th})$

- Hint of $\beta_n > \beta_p$? $\beta_n \beta_p$ presently most uncertain input to $(M_p M_n)^{em}$
- Higher-energy data being analyzed; theory for E_{γ} >m $_{\pi}$ under development
- Consistent with quasi-free $\gamma d \rightarrow \gamma np$
- Future QF: JLAB FEL for ARCS? Theory.

Future NEXT TALK gies; asymm

COMPTON IN A=3

- Recent experimental interest in elastic Compton from ³He, ⁴He
- Larger charge⇒larger absolute effect of polarizabilities
- Theory: extension of γd

- HIGS: polarized ³He target
- Asymmetries from polarized ³He predicted to be as those from a free (polarized) neutron
- Access to neutron γs!

PRECISE EW STRUCTURE IN A=2

Precision computation of polarizability corrections in µd: input to BSM search

$$\delta_{2\gamma E} = \delta_{\text{pol}}^A + \delta_{\text{Zem}} + \delta_{\text{pol}}^N = 1.690 \pm 0.020 \text{ meV}$$

Prediction for MuSun experiment: $\mu^- + d \rightarrow \nu_\mu + n + n; \Gamma_D = 393(3) \text{ s}^{-1}$

- Analogous computation for µ⁻ capture on ³He sets limits on BSM physics
- Confidence in ability of χEFT to describe fewbody electroweak structure

- Analogous computation for µ⁻ capture on ³He sets limits on BSM physics
- Confidence in ability of χEFT to describe fewbody electroweak structure
- χEFT calculation of polarizability correction key input for μ⁴He result at PSI
- Next seven years will see precise calculations of EM structure to at least A=12

Picture credits: M. Piarulli et al., L. Myers et al., NPLQCD

- Analogous computation for µ⁻ capture on ³He sets limits on BSM physics
- Confidence in ability of χEFT to describe fewbody electroweak structure
- χEFT calculation of polarizability correction key input for μ⁴He result at PSI
- Next seven years will see precise calculations of EM structure to at least A=12
- New era of using light, but not few-body, nuclei for determination of neutron EM properties

- Analogous computation for µ⁻ capture on ³He sets limits on BSM physics
- Confidence in ability of χEFT to describe fewbody electroweak structure
- χ EFT calculation of polarizability correction key input for μ^4 He result at PSI
- Next seven years will see precise calculations of EM structure to at least A=12
- New era of using light, but not few-body, nuclei for determination of neutron EM properties

BROADTHEMES

Picture credits: E. Downie, H. Grießhammer, A. Alexandru et al.

 m_{π} [MeV]

BROADTHEMES

Picture credits: E. Downie, H. Grießhammer, A. Alexandru et al.

- Theory: synergistic blend of LQCD, EFT, phenomenology
- Understand QCD interplay of π , Δ , heavier d.o.f.
- Strong emphasis on uncertainty quantification
- New experimental facilities and capabilities provide new opportunities to observe this interplay

BROADTHEMES

Picture credits: E. Downie, H. Grießhammer, A. Alexandru et al.

- Theory: synergistic blend of LQCD, EFT, phenomenology
- Understand QCD interplay of π , Δ , heavier d.o.f.
- Strong emphasis on uncertainty quantification
- New experimental facilities and capabilities provide new opportunities to observe this interplay
- Theorists and experimentalists working together to identify best opportunities and interpret data
- Improvement in understanding of nuclear dynamics from χ EFT (and ultimately LQCD) allows nuclei to be used as neutron targets in novel ways.
- Chiral dynamics in A=0, 1, 2, ...now a precision tool: particularly important for BSM-physics searches

150

200

250

300

 m_{π} [MeV]

350

400

450 500