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The role of p+A collisions

n Started as a control experimental tool to calibrate the A+A 
measurements for a sounder interpretation
n Benchmarking: Cold vs Hot nuclear matter effect

n It has evolved significantly in recent years, opening new windows to 
study
n Novel QCD dynamics, such as gluon saturation, (in)coherent multiple 

scattering, nuclear PDFs, cold nuclear matter energy loss, ...
n Nucleus: a laboratory for QCD
n Even surprises: ridge, flow
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Hard Probe

hot nuclear matter hot nuclear matter

see B. Schenke’s talk



QCD collinear factorization

n Main ingredients:
n Protons are dilute systems of quarks and gluons, thus independent/incoherent 

single scattering
n Collinear parton distribution is governed by a “linear” evolution equation 

4parton radiation/splitting/branching

Q > Q0Q0

∂φ(x,Q2)

∂ lnQ2
= PDGLAP ⊗ φ(x,Q2)

σ ∝ φp(xa, Q
2)⊗ φp(xb, Q

2)⊗ σ̂ab→γ/jet,···



Parton distribution in small x 
n Going to small x region, parton density (especially gluon density) 

grows dramatically

n Because it is so dense, the external probe will interact with the whole 
dense system “coherently”
n When so many gluons are squeezed in a confined proton, besides the usual 

splitting, they also start to overlap and recombine
n Nonlinear dynamics/evolution (BK eqn): saturation scale          from the balance
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What Do We Know About Glue in Matter?

• Scaling violation: dF2/dlnQ2 and 

linear DGLAP Evolution ! 

G(x,Q2)! 
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∂N(x, r⊥)

∂ ln (1/x)
= αsKBFKL ⊗N(x, r⊥)− αs [N(x, r⊥]
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Qs(x)

radiation recombination



Search for gluon saturation

n Gluon saturation is an inevitable consequence of QCD dynamics at 
high energy (small x)

n Important questions:
n Where does the transition happen?
n What are the properties of this saturated regime?
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n Color Glass Condensate (CGC) approach

n BK evolution equation for dipole gluon distribution

How does it work?

7

p⊥ = z k⊥

Collinear factorization Color Glass Condensate

2→2 process, hard interaction coherent multiple scattering

U(r⊥) = P exp

�
igs

� +∞

−∞
dλ+A−(λ+, r⊥)

�

∂N(x, r⊥)

∂ ln (1/x)
= αsKBFKL ⊗N(x, r⊥)− αs [N(x, r⊥]

2

k⊥

N(x, r⊥) = �U(0)U †(r⊥)�
✓coherent multiple scattering encoded in

✓dipole gluon distribution:  

F (x, k⊥) = F.T. of N(x, r⊥)



Study gluon saturation in p+A collisions

n Going to forward rapidities
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forward ↔ y � 0
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RpA =
1

Ncoll

dNpA→hX/dyd2p⊥
dNpp→hX/dyd2p⊥

✓               in the absence of nuclear effects, i.e., 
if incoming parton interact with gluons in the 
nucleus incoherently as in A protons

✓The suppressed production was described in 
the CGC picture, along with the rapidity 
dependence

RpA = 1

Albacete & Marquet 2010

x1 ∼ p⊥√
s
e+y ∼ O(1)

x2 ∼ p⊥√
s
e−y � 1

dilute on dense scattering



dihadron angular correlation

n Forward-forward dihadron correlation
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✓p+p: standard 2→2 process, momentum conservation ➡ back to 
back dihadron

✓p+A: both outgoing partons independently receives a coherent 
transverse momentum kick, which breaks the back-to-back 
correlation and thus depletes the angular correlation function 
around 

✓Experimental data seems to support such a CGC prediction ➡ 
smoking gun of gluon saturation? 

xg =
p⊥√
s
(e−y1 + e−y2)

h2

h1

∆φ = π



n Include additional scattering order by order through power correction

Other approaches: high-twist/multiple scattering expansion
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n Saturation: all the coherent multiple 
scattering (MS) are equally important 
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n Dilute: single scattering picture   
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n Saturation: all the coherent multiple 
scattering (MS) are equally important 
resumed to UGD                in CGCF (xg, k⊥)

n Dilute: single scattering picture   
collinear factorization

n Relatively dense: coherent MS starts to 
become important (high-twist)               
✓ works when each term is controllable

✓ fails when all terms are equally important
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σ ∝ φp(xa, Q
2)⊗ φA(xb, Q

2)⊗ σ̂ab→γ/jet,···

Other approaches: nuclear PDFs

n Nuclear PDFs (nPDFs)
n Include all the nuclear dependence within a universal nPDFs
n Still the standard independent/incoherent single scattering
n nPDFs follow the standard DGLAP linear evolution
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Nuclear PDFs approach = Collinear factorization with a different

                                     boundary condition (for nPDFs)
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Kang, Vitev, & Xing, 1112.6021
Kang, Vitev & Xing, 1209.6030, 
see also earlier Vitev & Qiu, 03, 06
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nPDFs: difficulty in describing the forward suppression

n nPDFs approach work rather well for central rapidity

n A global fitting including the forward suppression data is possible, but 
resulting in a sizable tension with DIS data
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Lesson learned: 
✓Coherent multiple scattering is crucial    
                      

✓At current energy, power corrections are still controllable
  

➡ transition leading to saturation (onset of gluon saturation)

Salgado et.al., 1105.3919

Eskola, et.al., 0902.4154

mid-rapidity forward-rapidity



LHC data at mid-rapidity
n At the moment, seems no discriminate power between coherent 

scattering models and nPDF model
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LHC p+Pb collisions at forward rapidity

n J/ψ production at forward rapidity at LHC: shows strong suppression

n Inconsistency with model always provide new opportunities
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Kang-Ma-Venugopalan, 1309.7337
Qiu-Sun-Xiao-Yuan, 1310.2230

✓Earlier CGC model seems not to be 
working well: used color evaporation 
model 

✓New CGC calculation has been 
developed recently: full small-x 
evolution + NRQCD 

LHCb has similar forward rapidity result
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RHIC and LHC: complementarity

16

lnQ2

Y = ln 1
x

transition
RHIC

LHC

RHIC is sitting at the sweet spot   ➡  sensitive to transition region
LHC at forward rapidity hopefully to be deep inside the saturation region

Salgado, Hard Probe 2012

Other points: RHIC can study A-dependence, 
                      dilute-dense vs dense-dense ... 



n Polarized p+A collisions

A unique new opportunity at RHIC
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k⊥
�s⊥

Kang & Yuan, 1106.1375
Kovchegov & Sievert, 1201.5890
Kang & Xiao, 1212.4809

✓Take advantage of large single spin 
asymmetry AN in forward region

✓AN is an azimuthal effect, spin-dependent 
function is k⊥-odd function

                   
      

✓Thus AN will pick up the slope of the 
gluon distribution in momentum space, 
which is controlled by saturation scale

q⊥

ApA→h
N

App→h
N

�����
p2
T�Q2

s

= 1
ApA→h

N

App→h
N

�����
p2
T�Q2

s

≈
Q2

s,p

Q2
s,A

talk by E.C. Aschenauer

AN ∝ dF (xg, q⊥)

dq⊥
∼ 1/Qs



Tremendous theoretical progress
n CGC/small-x formalism

n NLO nonlinear evolution and solution

n NLO correction for production processes

n High-twist/multiple scattering formalism
n NLO correction for transverse momentum broadening at both e+A and p+A
n DGLAP type evolution for the relevant multi-parton correlation functions

n nPDFs approach
n Full NLO global fitting
n nPDFs with impact parameter dependence

n Connection between CGC, high-twist and collinear formalism
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DIS: Balitsky & Chirilli 11, 13, G. Beuf 12, ...
single hadron in pA: Chirilli, Xiao & Yuan 12, Altinoluk & Kovner 11, Kang, Vitev & Xing 14, ...
nucleus-nucleus collisions: Gelis, Lappi & Venugopalan 08, ...

NLO BK: Balitsky & Chirilli 08
NLO BFKL solution: Chirilli & Kovchegov 13
NLLx B-JIMWLK: Kovner, Lublinsky, Mulian 13, Caron-Huot, Balitsky, Chirilli
Full B-JIMWLK solution: Dumitru, Jalilian-Marian, Lappi, Schenke & Venugopalan 11, Alvioli, 
Soyez & Triantafyllopoulos 13

Z. Kang, X.N. Wang, I. Vitev, E. Wang & H. Xing, 13, 14

Eskola, Paukkunen, Salgado, et.al., 09, 12 
de Florian, Sassot, Zurita & Stratmann 12

Kang, Qiu & Xing 13, Ma & Venugopalan 14, Stasto, Xiao, Yuan & Zaslavsky 14



Looking into the future 1

n Improve/constrain each model: hope to discriminate them and lead to 
the discovery of gluon saturation

n Global analysis of the most important ingredient in each formalism
n nPDFs
n CGC approach: dipole, quadrupole gluon correlator

n Nuclear PDFs
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n Precision study for small-x dynamics: global analysis

n What are needed?

Looking into the future 2
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dipole gluon distribution
✓Single hadron
✓Direct photon
✓photon + Jet (hadron)
✓Drell-Yan (DY)
✓DY + Jet (hadron)

dipole + quadrupole
✓dihadron
✓dijet, hadron + Jet
✓J/ψ, ϒ

Example prediction
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Other opportunities

n Backward rapidity region

n Cold nuclear matter (CNM) energy loss
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parton momentum fraction x is relatively large in the nucleus

outside small x region: incoherent multiple scattering region 

talks by Y. Kovchegov and T. Ullrich

radiation length, transport properties, ...



Future Electron Ion Collider (EIC)

n EIC: The Next QCD Frontier - understanding the glue that binds us all

n The unambiguous ultimate proof of existence of saturation and its 
detailed properties can only come from EIC
n Only DIS allows for the direct, model-independent, determination of the 

kinematics, such as x and Q2

n Electron: point like and structureless; Proton: also a complicated object
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n Need both p+A and e+A for a full understanding of the QCD 
dynamics at high energy
n Each process/observable has its own unique QCD dynamics - dynamics is 

process-dependent

n If the theory of factorization is correct, the associated gluon distribution 
function (dipole and quadrupole) should be universal

n It is important to test the process-dependence of the QCD dynamics and the 
universality of the gluon distribution (along with the detailed small-x evolution)

Each piece gives unique information

23

pA: initial+final DIS: final
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pA: initial+final DIS: final

Jets (p. 4)

Introduction

Background Knowledge
Jets from scattering of partons

Jets are unavoidable at hadron
colliders, e.g. from parton scat-
tering
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!! Extending the high pT limit beyond Tevatron reach 

!! Accessing the low pT part using different 
    jet reconstruction algorithms 

!! Good agreement with NLO predictions 
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n Need both p+A and e+A for a full understanding of the QCD 
dynamics at high energy
n Each process/observable has its own unique QCD dynamics - dynamics is 

process-dependent

n If the theory of factorization is correct, the associated gluon distribution 
function (dipole and quadrupole) should be universal

n It is important to test the process-dependence of the QCD dynamics and the 
universality of the gluon distribution (along with the detailed small-x evolution)

Each piece gives unique information
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pA: initial+final DIS: final
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!! Extending the high pT limit beyond Tevatron reach 

!! Accessing the low pT part using different 
    jet reconstruction algorithms 

!! Good agreement with NLO predictions 
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n Need both p+A and e+A for a full understanding of the QCD 
dynamics at high energy
n Each process/observable has its own unique QCD dynamics - dynamics is 

process-dependent

n If the theory of factorization is correct, the associated gluon distribution 
function (dipole and quadrupole) should be universal

n It is important to test the process-dependence of the QCD dynamics and the 
universality of the gluon distribution (along with the detailed small-x evolution)

Each piece gives unique information
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pA: initial+final DIS: final

LHC p+A
RHIC p+A

EIC e+A EIC e+A

EIC: seal the case for 
gluon saturation



Summary

n The study of p+A collisions on its own provides great opportunities
n The transition from the dilute to dense parton system
n The small-x gluon dynamics (coherent multiple scattering, small-x evolution) 

and gluon saturation
n Incoherent multiple scattering, nuclear PDFs, CNM energy loss ...

n Tremendous progress has been made in promoting each formalism 
(CGC, high-twist/multiple scattering, nPDFs), and their connections

n RHIC p+A and LHC p+A has great potential 

n Ultimately it will be the combination of strong p+A and e+A 
programs, each providing complementary measurements, that will 
enable us to obtain a full understanding of the gluon saturation

n Electron Ion collider, the next QCD frontier to study all these 
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Thank you


