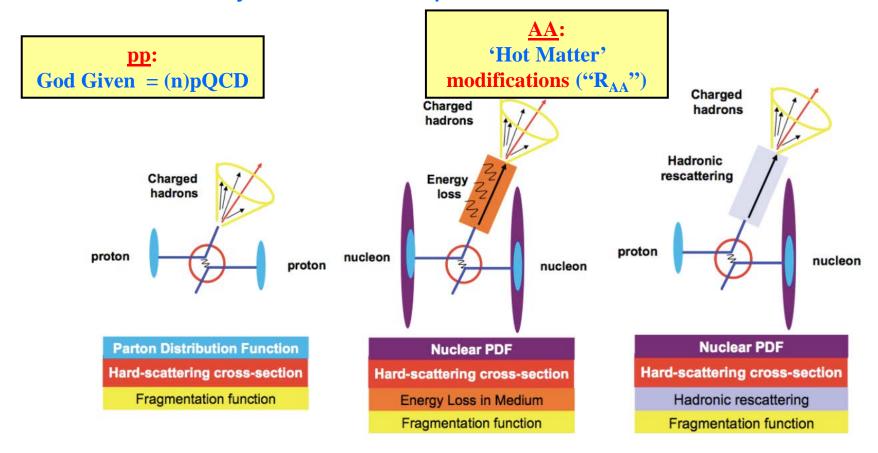
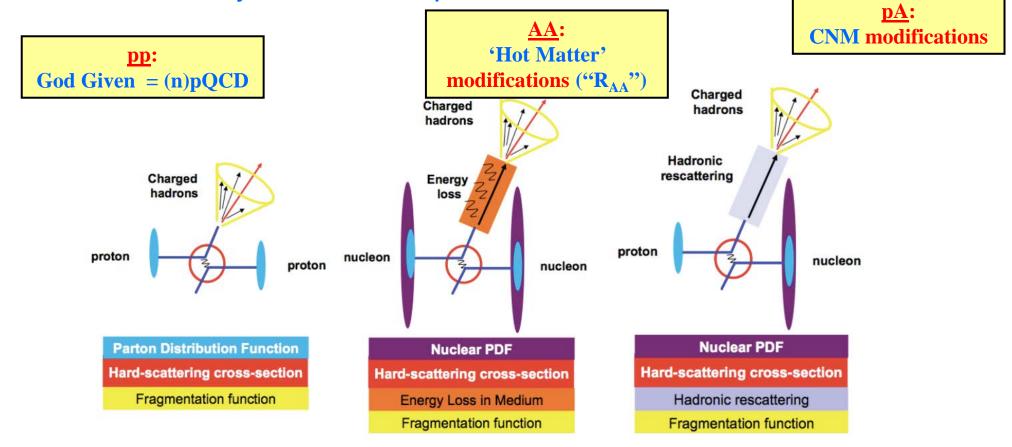

URHI Paradigm (Modus Operandi)


- large & dense systems = our physics
- small & dilute systems = comparison data

NSAC LRP 1014 J. Schukraft

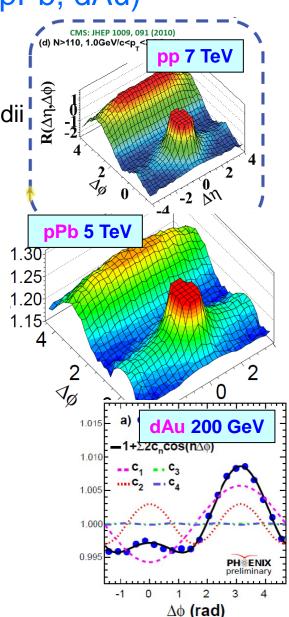
URHI Paradigm (Modus Operandi)


- large & dense systems = our physics
- small & dilute systems = comparison data

URHI Paradigm (Modus Operandi)

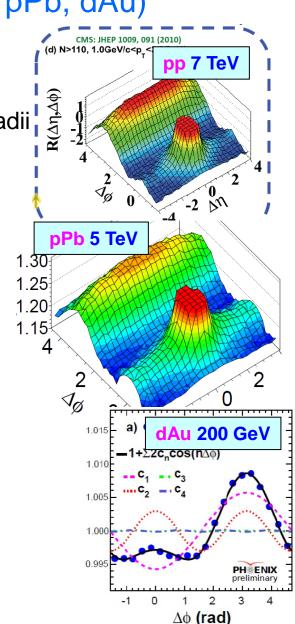
large & dense systems = our physics

small & dilute systems = comparison data


.. and then came the 'Ridges'

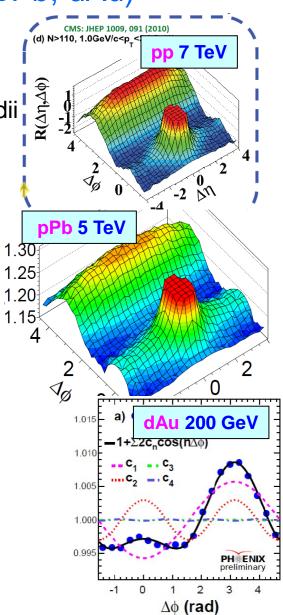
with ALL the bells and whistles of elliptic flow (pp, pPb, dAu)

 \Rightarrow collective (v_2 {4}= v_2 {6}= v_2 {n}), v_2 , v_3 , right amplitude, f(b, m, p_T),


• other nontrivial similarities in e⁺e⁻, pp, pA, AA

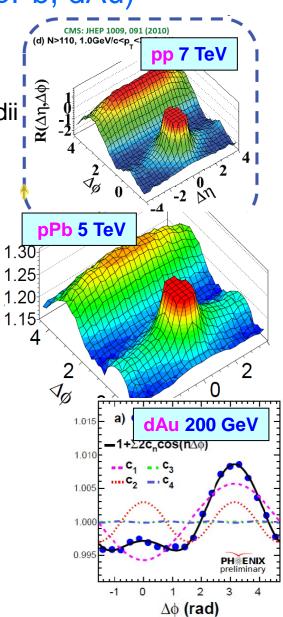
⇒ (quasi)thermal particle ratios, flow-like pt spectra, growing HBT radii

.. and then came the 'Ridges'


- with ALL the bells and whistles of elliptic flow (pp, pPb, dAu)
 - \Rightarrow collective $(v_2\{4\}=v_2\{6\}=v_2\{n\}), v_2, v_3, right amplitude, f(b, m, p_T),$
- other nontrivial similarities in e⁺e⁻, pp, pA, AA
 - (quasi)thermal particle ratios, flow-like pt spectra, growing HBT radii

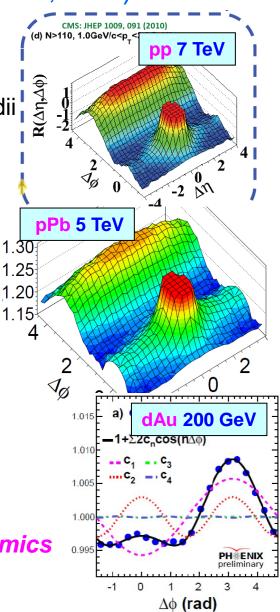
.. and then came the 'Ridges'

- with ALL the bells and whistles of elliptic flow (pp, pPb, dAu)
 - \Rightarrow collective (v_2 {4}= v_2 {6}= v_2 {n}), v_2 , v_3 , right amplitude, f(b, m, p_T),
- other nontrivial similarities in e⁺e⁻, pp, pA, AA
 - ⇒ (quasi)thermal particle ratios, flow-like pt spectra, growing HBT radii


- Challenge: measure (expt) & understand (theory)
 - ⇒ emergence of dense collective matter properties in small systems
- Opportunity: (literally) adds new dimension (size)
 - \Rightarrow study not only density $f(dN/dy, T, \sqrt{s})$, but also size f(r)

.. and then came the 'Ridges'

- with ALL the bells and whistles of elliptic flow (pp, pPb, dAu)
 - \Rightarrow collective $(v_2\{4\}=v_2\{6\}=v_2\{n\}), v_2, v_3, \text{ right amplitude, } f(b, \mathbf{m}, p_T),$
- other nontrivial similarities in e⁺e⁻, pp, pA, AA
 - ⇒ (quasi)thermal particle ratios, flow-like pt spectra, growing HBT radii


- Challenge: measure (expt) & understand (theory)
 - ⇒ emergence of dense collective matter properties in small systems
- Opportunity: (literally) adds new dimension (size)
 - \Rightarrow study not only density $f(dN/dy, T, \sqrt{s})$, but also size f(r)
 - ⇒ both *ideal liquid* flow & *energy loss* consequence of dense **s**QGP
 - pA: large flow (v_2) , no jet quenching $(R_{pA}=1)$???
 - => not only density, also size matters!

.. and then came the 'Ridges'

- with ALL the bells and whistles of elliptic flow (pp, pPb, dAu)
 - \Rightarrow collective $(v_2\{4\}=v_2\{6\}=v_2\{n\}), v_2, v_3, \text{ right amplitude, } f(b, \mathbf{m}, p_T),$
- other nontrivial similarities in e⁺e⁻, pp, pA, AA
 - ⇒ (quasi)thermal particle ratios, flow-like pt spectra, growing HBT radii

- Challenge: measure (expt) & understand (theory)
 - ⇒ emergence of dense collective matter properties in small systems
- Opportunity: (literally) adds new dimension (size)
 - \Rightarrow study not only density $f(dN/dy, T, \sqrt{s})$, but also size f(r)
 - ⇒ both *ideal liquid* flow & *energy loss* consequence of dense **s**QGP
 - pA: large flow (v_2) , no jet quenching $(R_{pA}=1)$???
 - => not only density, also size matters!
 - ⇒ smaller systems => **finite size/lifetime** effects see the **dynamics** at work, rather then (equilibrated) **thermodynamics**
 - Hyperons in pA: sequential strangeness saturation (Λ, Ξ, Ω) ???

.. towards a new Paradigm ??

- How to respond to these latest revelations ?
 - ⇒ Coherent new set of measurements & theoretical interpretation
 - vary not only density (dN/dy, \sqrt{s}), but also geometry (r, different AB collisions, incl. pp !!)
 - small systems (incl. pp) are an integral part of the dense matter (QGP) physics

.. towards a new Paradigm ??

- How to respond to these latest revelations ?
 - ⇒ Coherent new set of measurements & theoretical interpretation
 - vary not only density (dN/dy, \sqrt{s}), but also geometry (r, different AB collisions, incl. pp !!)
 - small systems (incl. pp) are an integral part of the dense matter (QGP) physics
 - ⇒ LHC, but possibilities to vary ion species unfortunately <u>very</u> limited (BSM machine)
 < 4 weeks/year heavy ions, 2-in-one magnets, injector chain</p>

RHIC vital & absolutely unique (QCD machine)

to explore this new science opportunities dAu, ³HeAu, pA (A=¹²C, ... ¹⁹⁷Au ??), pp (high dN/dy)

NSAC LRP 1014 J. Schukraft

.. towards a new Paradigm ??

- How to respond to these latest revelations ?
 - ⇒ Coherent new set of measurements & theoretical interpretation
 - vary not only density (dN/dy, \sqrt{s}), but also geometry (r, different AB collisions, incl. pp !!)
 - small systems (incl. pp) are an integral part of the dense matter (QGP) physics
 - ⇒ LHC, but possibilities to vary ion species unfortunately <u>very</u> limited (BSM machine)
 - < 4 weeks/year heavy ions, 2-in-one magnets, injector chain

RHIC vital & absolutely unique (QCD machine)

to explore this new science opportunities dAu, ³HeAu, pA (A=¹²C, ... ¹⁹⁷Au ??), pp (high dN/dy)

- looking at small systems with the eyes (& tools) of the QGP physicist
 - may not only learn something about QGP, but (hopefully) get a step closer to a

Common and coherent experimental & theoretical approach to

soft QCD

from MB pp/e⁺e⁻ to central AA, with pA the bridge in between

maybe solve a few longstanding mysteries along the way..

definitely adds plenty of productive & exciting exp + theo work to our field #

NSAC LRP 1014 J. Schukraft

towards a new Paradigm ??

- How to respond to these latest revelations ?
 - ⇒ Coherent new set of measurements & theoretical interpretation
 - vary not only **density** (dN/dy, √s), but also **geometry** (r, different AB collisions, incl. pp !!)
 - small systems (incl. pp) are an integral part of the dense matter (QGP) physics
 - ⇒ LHC, but possibilities to vary ion species unfortunately <u>very</u> limited (BSM machine)
 - < 4 weeks/year heavy ions, 2-in-one magnets, injector chain

RHIC vital & absolutely unique (QCD machine)

to explore this new science opportunities dAu, ³HeAu, pA (A=¹²C, ... ¹⁹⁷Au ??), pp (high dN/dy)

- looking at small systems with the eyes (& tools) of the QGP physicist
 - may not only learn something about QGP, but (hopefully) get a step closer to a

Common and coherent experimental & theoretical approach to

soft QCD

from MB pp/e+e- to central AA, with pA the bridge in between

maybe solve a few longstanding mysteries along the way..

definitely adds plenty of productive & exciting exp + theo work to our field #