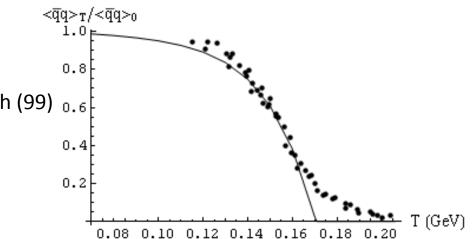
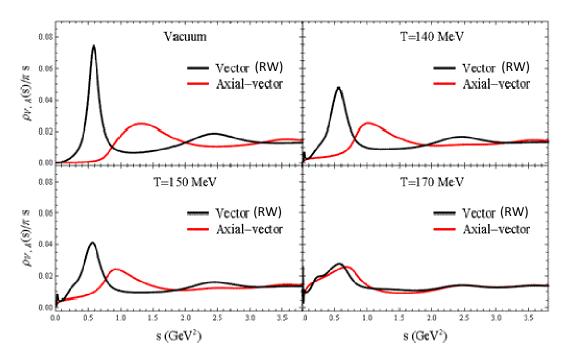

Dileptons and chiral symmetry restoration

Paul Hohler Texas A&M University

- Chiral symmetry
 - Spontaneously broken in QCD vacuum
 - ightarrow Imprinted on hadron spectrum
 - Restored at finite temperature
 - \rightarrow Diagnose via hadron spectrum in medium
- HICs: in-medium ρ via low-mass dileptons
 - Broadening/melting consistent with data
 - Manifestation of chiral restoration?
- Need to test degeneracy with chiral partner (a₁)
 Difficult to measure
- Theory required to unravel mechanisms



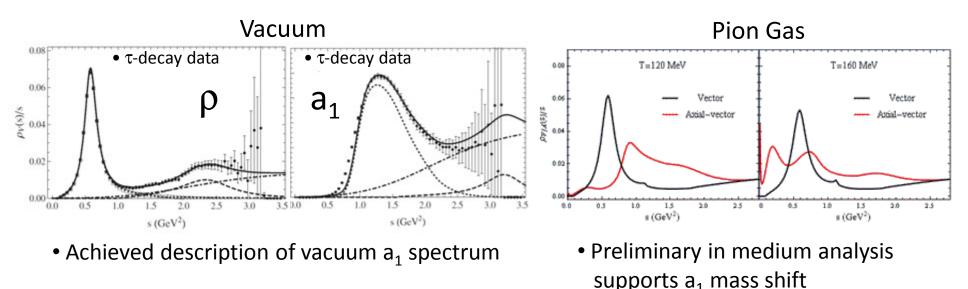
STAR N. Xu, QM14


Sum Rules Analysis:

Relate ρ and a_1 properties to QCD condensates

- Inputs
 - ρ spectral function from Rapp, Wambach (99) ₀. (→ dilepton experiments)
 - Finite-T condensates from Lattice QCD / Hadron Resonance Gas

• Search for in-medium a₁ to satisfy both QCD and Chiral sum rules


- Findings
 - Mass splitting "burns off"
 - Resonances "melt"
 - Compatible with approach to chiral restoration
- Underlying mechanism?

In progress: Hadronic Effective Theory

PRD89 (2014) 125013

Calculate (ρ , a_1) properties and chiral condensate in one microscopic framework:

Implement (ρ , a_1) in chiral Lagrangian as gauge bosons ("Massive Yang-Mills")

Future tasks:

- Full implementation of medium effects including baryons
- Need precise low-mass dilepton data at $\mu_{\alpha} \sim 0$ (RHIC/LHC)

Decisive progress in understanding chiral symmetry restoration achievable.