Summary of the 3rd Workshop on Jet Modification in the RHIC and LHC Era @ Wayne State University An unordered, unprioritized summary

Town Hall Meeting

Rosi Reed

Address the important fundamental questions of "how" and "why" partons lose energy in the QGP

- Understanding of how to model the bulk is under control (via hydro coupled to hadronic cascade) and there has been significant progress in our understanding of quenching
- Jet quenching measurements at RHIC and LHC provide significant constraints on the partonic E_{loss} mechanisms
 - Will be used towards a standard formulation of E_{loss} in the QGP
 - Not yet at the precision stage wrt to the bulk formulation
 - Where does the "lost" energy go?
 - Important to constrain models and in their coupling with the medium
 - Missing p_T measurements at the LHC
 - RHIC measurements via Jet Geometry Engineering
 - Advances towards medium & jet energy conservation simultaneously in MC needed!
- T dependence of the QGP coupling -> Near T_c Enhancement?
 - Needs complementary LHC and RHIC measurements

Rosi Reed - Wayne State University

Length scale via interaction hardness (Q²)

- What are we scattering off?
 - point-like at LHC —> lower energy jets at RHIC?
- quasi-particles, fields <=> Microscopy of the QGP
- qhat vs. ehat with RHIC/LHC temperature lever arm
 RHIC
 - STAR will continue its jet program (medium-term)
 - **sPhenix** increased capabilities will allow a direct comparison to the LHC
 - High luminosity will allow data collection without imposing online trigger "biases" allows full exploration of "Jet Geometry Engineering"
 - Increased precision in the long-term are needed to map out T evolution
- Could the different densities/associated time evolution of different collision systems allow access to different effective temperatures than centrality or √s_{NN} variations with respect to quenching?
 LHC
 - Allows precision jet measurements
 - New jet observables: Jet(sub-) structures will allow access to well defined QCD observables: Jet shapes, jet mass, multi-jet, etc

- Major theory milestone is the formulation/implementation of most theoretical E_{loss} variants in MC form
 - Allows details of the experimental jet definitions to be reproduced
- LHC run 2+3 will provide precision measurements and unprecedented kinematical reach
 - Direct photon/Z measurements provide the cleanest access to the parton kinematics in heavy-ion collisions
- RHIC steeply falling partonic spectrum can be used as an advantage towards Jet Geometry Engineering
 - High rates of sPhenix are needed for unbiased measurements required for the baseline
 - High p_T, high statistics gamma-jet measurements will allow clean access to parton kinematics
- There is a need to formulate a framework which allows direct comparison of measurements and full-event MC simulation
 - Lisbon Accord -> Rivet
 - Analytical/1st principles calculations and advances are needed towards a textbook formulation

Rosi Reed - Wayne State University