The Hadron Physics Landscape : Next 10 Years

The Facilities: Today

- 12 GeV polarized e : first beam 2013, commissiong 2014, produc 2015
- Complementary capabilities in 4 Halls \rightarrow broad physics program

STAR PH 米ENIX

- Transv (T) \& Longit (L) polarized p beams colliding at $\sqrt{ } \mathrm{s}=200 \mathrm{GeV}$ or 500 GeV
- L core : $\mathrm{AlL}^{\text {r0 }}$ (PHENIX) \& $\mathrm{ALLet}^{\text {jet }}$ (STAR) $\rightarrow \Delta \mathbf{g}(\mathbf{x})$

$$
: \mathrm{A}_{\mathrm{L}}{ }^{\mathrm{w}_{ \pm}} \text {at } \sqrt{\mathrm{s}}=500 \mathrm{GeV} \rightarrow \Delta \mathrm{qbar}(\mathbf{x})
$$

- T core : $\mathrm{A}_{\mathrm{N}}{ }^{\mathrm{r0}, \mathrm{n}, \mathrm{jet}, \ldots \rightarrow \text { Sivers/Collins/Twist-3 mix }}$

- $190 \mathrm{GeV} \pi$ beam on T-polarized H target \rightarrow polarized Drell-Yan
- First beam expected end of 2014

Beam Commissioning to Hall A

Jefferson Lab in Newport News hits major milestone in accelerator upgrade April 30, 2014|By Tamara Dietrich, tdietrich@dailypress.com | Daily Press

Jefferson Lab in Newport News has reached a "major milestone" in its drive to double the energy of its electron accelerator and become the only facility in the world capable of answering key questions about quarks, the building blocks of matter.

Beam on carbon target in Hall A ; $\mathrm{E}_{\text {beam }}=\mathbf{6 . 1} \mathbf{~ G e V}$

12 GeV CEBAF: Three Year Schedule

Pushing to Physics

4 SOLID detector in Hall A \rightarrow large acceptance $\&$ high rate for parity violation (PVDIS) \& polarized SIDIS programs

STAR PH棌ENIX
Forward! Forward! \rightarrow higher $\eta=$ higher $x_{\text {beam }}$, lower $x_{\text {target }}$

+ STAR Forward Calorimeter System = EMCaI + HCaI \rightarrow forward jets \& e/h separaton for Drell-Yan
+ fsPHENIX = forward spectrom w EMCal, HCal, RICH, tracking \rightarrow forward jets + identified hadrons and Drell-Yan

Polarized Beam and/or Target w SeaQuest detector
A high-luminosity facility for polarized Drell-Yan

+ E-1027 MI p \uparrow beam w polarized source +1 Siberian Snake
+ E-1039 SeaQuest with polarized $p \uparrow$ target

Spectroscopy
 Low- x and the CGC

Medium Modifications : the EMC Effect Form Factors

Low x \& the Color Glass Condensate

Study pA \rightarrow nucleus enhances gluon density \rightarrow "effectively" lowers x Forward rapidity \rightarrow high-x quark (beam) vs low-x gluon (target)

- mult. scat. of quark through saturated gluons?
- g recombination \rightarrow CGC?

RHIC Future: $\mathrm{p} \uparrow+A$ SSAs

N.C.R. Makins, QCD Town Mtg, Philadelphia, Sep 13, 2014

The EMC Effect \& Short-Range Correlations

EMC Slopes
$0.35 \leq x_{B} \leq 0.7$
inclusive $A\left(e, e^{\prime}\right)$ at $x>1$
SRC Scaling factors
$1.5 \leq x_{B} \leq 2$

K. Egiyan et al, PRL96, 082501 (2006)

SRC: nucleons see strong repulsive core at short distances EMC effect: quark momentum in nucleus is altered

Weinstein et al., PRL 106, 052301 (2011)
N.C.R. Makins, QCD Town Mtg, Philadelphia, Sep 13, 2014

EMC \& SRC: 5 approved expts to sort it out

Some features :

- exhaustive target scan to vary nuclear properties \rightarrow e.g. local density : ${ }^{1} \mathrm{H},{ }^{2} \mathrm{H},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{6} \mathrm{Li}, 7 \mathrm{Li}$, ${ }^{9} \mathrm{Be},{ }^{10} \mathrm{Be},{ }^{11} \mathrm{~B},{ }^{12} \mathrm{C},{ }^{40} \mathrm{Ca}$, ${ }^{48} \mathrm{Ca}, \mathrm{Cu}$
- study isospin dependence of effects
- extensive kinematic scan \rightarrow to $x>3$ seeking second $3 N$-plateau \& to $\mathrm{Q}^{2} \approx 20$
${ }^{2} \mathrm{H},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{6,7} \mathrm{Li},{ }^{9} \mathrm{Be}$, ${ }^{10,11} \mathrm{~B},{ }^{12} \mathrm{C},{ }^{40,48} \mathrm{Ca}, \mathrm{Cu}, \mathrm{Au}$

Nucleon Form Factors: 6 Approved Expts

N.C.R. Makins, QCD Town Mtg, Philadelphia, Sep 13, 2014

Quark Orbital Angular Momentum

Many calculations able to reproduce the falloff in G_{E} / G_{M}

- Descriptions differ in details, but nearly all were directly or indirectly related to quark angular momentum

Charged Pion Form Factor

Study transition from non-perturb. to perturb. regime

Expected at lower Q ${ }^{2}$ than for nucleon
pQCD makes exact prediction for $\mathrm{Q}^{2} \rightarrow \infty$, benchmark for all nucleon structure models

Models from relativistic CQM to hard QCD calculations
E12-06-101: Hall C, 52 days, 2018 (fully comm. SHMS), rating: A (PAC 35)

Parton Distribution Functions:

The Limit $x \rightarrow 1$ of $q(x)$ and $\Delta q(x)$

PDFs in the limit $x \rightarrow 1$

What happens at this bizarre limit?
d / u as $x \rightarrow 1$ plagued by nuclear corrections on D or 3He

2 clever strategies at 12 GeV !
$x \rightarrow 1$ predictions $\quad F_{2}^{n} / F_{2}^{p} \quad d / u \quad A_{1}^{n}$
$A_{1}{ }^{p}$

SU(6)	$2 / 3$	$1 / 2$	0	$5 / 9$

Quark Model/lsgur	$1 / 4$	0	1	1
Perturbative QCD	$3 / 7$	$1 / 5$	1	1
QCD Counting Rules	$3 / 7$	$1 / 5$	1	1

BONUS: recoil detec ${ }^{n}$
target d

MARATHON: ${ }^{3} \mathrm{He} /{ }^{3} \mathrm{H}$

- extract n / p ratio from ratio of $A=3$ structure functions

$$
\frac{F_{2}^{n}}{F_{2}^{p}}=\frac{2 \mathcal{R}-F_{2}^{3} \mathrm{He} / F_{2}^{3} \mathrm{H}}{2 F_{2}^{3 \mathrm{He}} / F_{2}^{3 \mathrm{H}}-\mathcal{R}}
$$

\rightarrow ratio of ${ }^{3} \mathrm{He}$ to ${ }^{3} \mathrm{H}$ EMC ratios cancels to $\sim 1 \%$ for $x<0.85$
slow backward p
($\mathbf{p}<100 \mathrm{MeV}$)
\rightarrow neutron nearly on-shell
\rightarrow minimize rescattering
$d / u(x \rightarrow 1)$
Yellow band = current theory uncertainty

Definitive results at last!

2020+ : PVDIS on the Proton $\rightarrow \mathrm{d} / \mathrm{u}(\mathrm{x} \rightarrow 1)$ with SOLID

$$
\begin{gathered}
A_{P V}=\frac{G_{F} Q^{2}}{\sqrt{2} \pi \alpha}[\mathrm{a}(x)+Y(y) \mathrm{b}(x)] \\
a^{P}(x) \approx \frac{u(x)+0.91 d(x)}{u(x)+0.25 d(x)}
\end{gathered}
$$

Deuteron analysis has large nuclear corrections (Yellow)
$A_{\text {PV }}$ for the proton has no nuclear corrections \rightarrow complementary to BONUS \& MARATHON

The challenge is to get statistical and systematic errors $\sim 2 \%$

Spin structure at large x

\square Spin-dependent PDFs are even less well understood at large x than spin-averaged PDFs
\square Predictions for $x \rightarrow 1$ behavior:
\rightarrow scalar diquark dominance

$$
\frac{\Delta u}{u} \rightarrow 1, \quad \frac{\Delta d}{d} \rightarrow-\frac{1}{3} \quad A_{1}^{p, n} \rightarrow 1
$$

\rightarrow hard gluon exchange

$$
\frac{\Delta u}{u} \rightarrow 1, \quad \frac{\Delta d}{d} \rightarrow 1 \quad A_{1}^{p, n} \rightarrow 1
$$

\rightarrow spin-flavor symmetry

$$
\frac{\Delta u}{u}=\frac{2}{3}, \quad \frac{\Delta d}{d}=-\frac{1}{3} \quad A_{1}^{p}=\frac{5}{9}, \quad A_{1}^{n}=0
$$

- Spin PDFs almost completely unconstrained for $x \gtrsim 0.6$

A_{1} inclusive as $x \rightarrow 1$ from $H, D,{ }^{3} \mathrm{He}$

${ }^{3} \mathrm{He}:$ Hall C E12-06-110

also ${ }^{3} \mathrm{He}$: Hall A E12-06-122

Reconstruct $\Delta \mathbf{u} / \mathbf{u}$ \& $\Delta \mathrm{d} / \mathbf{d}$ at high x from any two of these

$\mathrm{NH}_{3}, \mathrm{ND}_{3}$: CLAS E12-06-109

CLAS will measure SIDIS asymmetries too, concurrently with these
N.C.R. Makins, QCD Town Mtg, Philadelphia, Sep 13, 2014

Valence Quark Polarizn as $x \rightarrow 1$

Combining $\mathrm{A}_{1}{ }^{\mathrm{n}}$ Hall $\mathbf{C} \& \mathrm{~A}_{1} \mathrm{p}$ CLAS

Definitive valence quark polarizations at $\boldsymbol{x} \boldsymbol{> 0 . 6} \boldsymbol{\rightarrow}$

NSAC milestone HP14 (2018) polarized part

Parton Distribution Functions:

Gluon and Antiquark Polarization

Longitudinal Data

	V_{s}	$\mathrm{L}^{*}(\mathrm{pb}-1)$
2006	200	$\mathbf{7}$
2009	200	$\mathbf{2 5}$
\boldsymbol{u}	500	10
2011	500	12
2012	500	82
2013	500	300

L* recorded at STAR

$\Delta \mathrm{g}$ at RHIC $\rightarrow 2020$

(1) Δg workhorses: ALL \rightarrow jet $+X$ @ STAR

$$
\pi^{0} p_{T}(\mathrm{GeV} / \mathrm{c})
$$

pQCD Fits :

N.C.R. Makins, QCD Town Mtg, Philadelphia, Sep 13, 2014

(2) reduce $X_{\text {min }}$ from $0.05 \rightarrow 0.02$ via $\sqrt{ } s=500 \mathrm{GeV}$ \& new/near-term forward detectors (e.g. PHENIX MPC)
(3) constrain x-dependence of $\Delta g(x)$ via \approx exclusive final states \rightarrow dijets at STAR \& di- π^{0} at PHENIX
\rightarrow reconstruct initial-state parton kinematics

Δ g 2020+
(4) forward upgrades : reduce $\mathrm{x}_{\text {min }} \rightarrow 0.001$

Longitudinal Data

	V_{s}	$\mathrm{L}^{*}(\mathrm{pb}-1)$
2006	200	$\mathbf{7}$
2009	200	$\mathbf{2 5}$
	500	10
2011	500	12
2012	500	82
2013	500	$\mathbf{3 0 0}$

\& matching fits :

10^{-2} N.C.R. Makins, QCD ${ }^{1 \rho^{-1}}$ own Mtg, Philadelphia, Sep 13, 2014

Polarized ${ }^{3} \mathrm{He}$ at RHIC, beyond 2017

- Source R\&D underway at MIT
- Important for EIC

Thanks to R. Milner

Goal: ${ }^{3} \mathrm{He}^{++}$at $3 \mathrm{E} 12 \mathrm{~s}^{-1}$ with 70% polarization

Tag proton spectator with Roman pots phase II

https://indico.bnl.gov/ conferenceProgram.py?confid=405 for proceedings of September 2011 RBRC/ BNL workshop on Opportunities for Polarized He-3 in RHIC and EIC.

Analysis depends on factorization :

e.g. at $\mathrm{LO} \rightarrow d \sigma^{h} \sim \sum_{q} e_{q}^{2} q(x) \cdot \hat{\sigma} \cdot D^{\mathrm{q} \rightarrow \mathrm{h}}(z)$

Δq bar at JLab : SIDIS

$$
d \sigma^{h} \sim \sum_{q} e_{q}^{2} q(x) \cdot \hat{\sigma} \cdot D^{\mathrm{q} \rightarrow \mathrm{~h}}(z)
$$

EMC, PR162 (1988)

... and knowledge of fragmentation functions (or fitted MC model thereof)

Caution required at modest energies

HERMES $3.1<W<7.2$ JLab $2.3<W<4.5$
not all that different ...

$1^{\text {st }}$ and last search for LO-factorizn ${ }^{\text {n }}$ edge

LO extractions of $\operatorname{PDF}(x)$ combinations from $\pi^{ \pm}$multiplicities

HERMES, PRL81 (1998)

Final multiplicities (2013) all combined:

\checkmark only breaks down where it MUST
N.C.R. Makins, QCD Town Mtg, Philadelphia, Sep 13, 2014

JLab SIDIS : Careful Strategy

(1) Make high-precision scans of $\sigma\left(x, z, p_{T}, Q^{2}\right)$ with Hall \mathbf{C} spectrometers

N.C.R. Makins, QCD Town Mtg, Philadelphia, Sep 13, 2014

CLAS12 SIDIS: Δq bar Statistical Projections

Improved PDFs from NLO analyses

N.C.R. Makins, QCD Town Mtg, Philadelphia, Sep 13, 2014

Generalized Parton Distributions:

Spatial Imaging of Partons
\& their
Orbítal Angular Momentum
hard exclusive processes \rightarrow

Generalized Parton Distributions

DVCS

Four new distributions : GPDs
q helicity sum $\rightarrow H(x, \xi, t)$

$$
\rightarrow \underset{\sim}{E}(x, \underset{\xi}{\xi}, t)
$$

q helicity diff $\rightarrow \tilde{H}(x, \xi, t)$

$$
\rightarrow \tilde{E}(x, \xi, t)
$$

Fourier transform of t-dependence

$x<0.1$

Goal 2: Orbital Angular Momentum
Ji's Sum Rule for $J^{q}=\frac{1}{2} \Delta \Sigma+L^{q}$

Goal 1: Transverse Imaging of Nucleon

$x \sim 0.8$

$$
J^{q}=\frac{1}{2} \int_{-1}^{1} x d x\left[H^{q}(x, \xi, t=0)+E^{q}(x, \xi, t=0)\right]
$$

DVCS Strategy at JLab-12

(2) Measure DVCS at CLAS in broad kinematic range with polarized \& unpol observables
(1) Establish scaling of $\sigma_{\text {DVcs }}$ in Hall A

E12-06-114 : unpol H target, Lpol beam
\rightarrow runs very early ≈ 2014

N.C.R. Makins, QCD Town Mtg, Philadelphia, Sep 13, 2014

Proton BSA DVCS $A_{L U}$

80 days @ $\mathcal{L}=10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ with 85% polarized beam

Projections for CLAS12

Statistical uncertainties: from 1 \% (low Q^{2}) to $10 \%\left(\right.$ high $\left.Q^{2}\right)$

Unprecedented statistics over the full ϕ range up to high $x=0.6$

Proton BSA DVCS $A_{L U}$

CLAS E12-06-009
80 days @ $\mathcal{L}=10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ with 85% polarized beam

Projected impact on GPD extraction methods

Projected impact on GPD extraction methods

Projection for the Nucleon transverse profile

Precision tomography in the valence region

DVCS Goal 2: Access to L via GPD E

Model predictions (VGG) for different values of $J_{u} \& J_{d}$

- C12-12-010: CLAS w HD-Ice Transverse target

sensitivity to J_{u} excellent, J_{d} very good
- E12-11-003: CLAS w

Unpol Deuterium target

$\mathrm{J}_{\mathrm{u}}, \mathrm{J}_{\mathrm{d}}$ sensitivity reversed more flavors \rightarrow exclusive meson program (more challenging)

TMDs : The Sivers Function

TMDs : The Sivers Distribution

Can't exist without quark OAM
(Orbital Angular Momentum)
but it is not L ... SSAs produced via some "lensing function", e.g. \rightarrow

"Smoking gun" prediction of TMD formalism:
\therefore Goal \#1 = observe the Sivers Sign Change

$$
\left.f_{1 T}^{\perp}\right|_{D I S}=-\left.f_{1 T}^{\perp}\right|_{D Y, W}
$$

DY

- NSAC Milestone HP13 (2015) "Test unique QCD predictions for relations between single-transverse spin phenomena in $p-p$ scattering and those observed in deep-inelastic scattering."
- COMPASS-II, RHIC-spin, polarized FNAL
- COMPASS-II (2014)
$\pi^{-} \mathrm{p} \uparrow$ Drell-Yan

- Beam-Polarized SeaQuest (2017+)

The Sivers Sign Change < 2020

RHIC : 500 pb $^{-1}$ (2016? $)_{\Varangle}$

2CD Town Mtg, Philadelphia, Sep 13, 2014

N.C.R. Makins, QCD *own Mtg, Philadelphia, Sep 13, 2014

Meson Cloud on an Envelope \rightarrow It ORBITS

Pions have $\mathrm{JP}^{\mathrm{P}}=0^{-}=$negative parity...
\rightarrow need $\underline{L=1}$ to get proton's JP $=1 / 2^{+}$

$$
\mid \mathrm{p}>=\mathrm{p}+\mathrm{N} \pi+\Delta \pi+\ldots
$$

$\mathbf{N} \pi$ cloud:
2/3 $n \pi^{+}$
$1 / 3 \mathrm{p} \pi^{0}$
$\Delta \pi$ cloud:
$1 / 2 \quad \Delta^{++} \pi^{-}$
$1 / 3 \quad \Delta^{+} \pi^{0}$
$1 / 6 \quad \Delta^{0} \pi^{+}$

$2 / 3 \quad L_{z}=+1$

$1 / 2 \quad L_{z}=-1$

$1 / 3 \quad L_{z}=0$

Dominant source of:
u,dbar-sea $=\mathrm{n} \pi^{+} \quad$ with $\quad \mathrm{L}_{2}($ pion $)>0$
d,ubar-sea $=\Delta^{++} \pi^{-}$with $L_{z}($ pion $)<0$
N.C.R. Makins, QCD Town Mtg, Philadelphia, Sep 13, 2014

Quark Spin, Orbital Angular Momentum, and Gule Angular Momentum

KehFeh Liu, INT Workshop, Feb 2012

New: add DI
Disconnected Insertions
\rightarrow Pure Sea

- Glue AM

The Sea is
 Orbiting!

$$
\begin{aligned}
& \Delta q \approx 0.25 \\
& 2 L_{q} \approx 0.49(0.0(\mathrm{CI}+0.49(\mathrm{DI}))
\end{aligned}
$$

$$
2 \mathrm{~J}_{g} \approx 0.25
$$

Leptons: clean, surgical tools

- Disentangle distribution (f) and fragmentation (D) functions \rightarrow measure all process
- Disentangle quark flavours $q \rightarrow$ measure as many hadron species H, h as possible

These are the only processes where TMD factorization is proven

Nucleon Structure with SoLID-SIDIS

Collins Asymmetry \quad Total >1400 points

Tensor Charges

0.5
$1-0.5$

Semi-inclusive Deep Inelastic Scattering program:
Large Acceptance + High Luminosity

+ Polarized targets
\rightarrow 4-D mapping of Collins, Sivers, and pretzelocity asymmetries,...
\rightarrow Tensor charge of quarks, transversity distributions, TMDs...
\rightarrow Benchmark test of Lattice QCD, probe QCD Dynamics and quark orbital motion

$$
\text { Pretzelosity } \rightarrow \text { information on OAM }
$$

$\sum_{q} e_{q}^{2} \mathbf{f}_{\mathbf{q}}^{\left(\mathbf{H}_{\mathbf{1}}\right)}\left(x_{1}\right) \mathbf{f}_{\overline{\mathbf{q}}}^{\left(\mathbf{H}_{\mathbf{2}}\right)}\left(x_{2}\right)$

- Clean access to sea quarks e.g. $\bar{d}(x) / \bar{u}(x)$ at E866/SeaQuest
- Crucial test of TMD formalism
\rightarrow sign change of T-odd functions

W reconstruction Strategy

Select events with the W-signature $>$ Isolated high $\mathrm{P}_{\mathrm{T}}>25 \mathrm{GeV}$ electron
$>$ Hadronic recoil with total $\mathrm{P}_{\mathrm{T}}>18 \mathrm{GeV}$

Ingredients for the analysis

- Isolated electron
- neutrino (not measured directly)
- Hadronic recoil

W-reconstruc ${ }^{n}$ achieved!

 despite the $\nu!$$\square$ Neutrino transverse momentum is reconstructed from missing P_{T}

$$
\vec{P}_{T}^{v} \approx-\sum_{\substack{\text { tracks } \\ \text { clusters }}} \vec{P}_{T}^{i}
$$

Neutrino's longitudinal momentum is reconstructed from the decay kinematics

$$
M_{W}^{2}=\left(E_{e}+E_{v}\right)^{2}-\left(\vec{p}_{e}+\vec{p}_{v}\right)^{2}
$$

W production

The Third Spin Program :
 Drell-Yan \& W-production

$$
\sum_{q} e_{q}^{2} \mathbf{f}_{\mathbf{q}}^{\left(\mathbf{H}_{1}\right)}\left(x_{1}\right) \mathbf{f}_{\mathbf{q}}^{\left(\mathbf{H}_{2}\right)}\left(x_{2}\right)
$$

- Clean access to sea quarks e.g. $\Delta \bar{u}(x), \Delta \bar{d}(x)$ at RHIC
- Crucial test of TMD formalism
\rightarrow sign change of T-odd functions
\star A complete spin program requires multiple hadron species \rightarrow nucleon \& meson beams

Drell-Yan : fsPHENIX and COMPASS-II

4/30/2014

John Lojoie

COMPASS, E-1027, E-1039 (and Beyond)

	Beam Pol.	Target Pol.	Favored Quarks	Physics Goals			
				(Sivers Function)			$L_{\text {sea }}$
				sign change	size	shape	
COMPASS $\pi^{-} p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X$	X	\checkmark	valence	\checkmark	X	X	X
$\begin{gathered} \mathbf{E - 1 0 2 7} \\ p^{\uparrow} p \rightarrow \mu^{+} \mu^{-} X \end{gathered}$	\checkmark	X	valence	\checkmark	\checkmark	\checkmark	X
$\stackrel{\mathrm{E}-1039}{p p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X}$	X	\checkmark	sea	X	\checkmark	\checkmark	\checkmark
$\begin{gathered} \mathrm{E}-10 \mathrm{XX} \\ p^{\uparrow} p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X \\ \vec{p} \vec{p} \rightarrow \mu^{+} \mu^{-} X \end{gathered}$	\checkmark	\checkmark	 valence	Transversity, Helicity, Other TMDs ...			

W. Lorenzon

Planned Polarized Drell-Yan Experiments

Experiment	Particles	$\begin{gathered} \text { Energy } \\ (\mathrm{GeV}) \end{gathered}$	x_{b} or x_{t}	$\underset{\left(\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)}{\text { Lumino }}$	$A_{T}^{\sin \phi_{5}}$	P_{b} or $\mathrm{P}_{\mathrm{t}}(\mathrm{f})$	rFOM ${ }^{*}$	Timeline
COMPASS (CERN)	$\pi^{ \pm}+\mathbf{p}^{\uparrow}$	$\begin{aligned} & 160 \mathrm{GeV} \\ & \sqrt{\mathrm{~s}=17} \end{aligned}$	$\mathrm{x}_{\mathrm{t}}=0.2-0.3$	2×10^{33}	0.14	$\begin{aligned} P_{t} & =90 \% \\ f & =0.22 \end{aligned}$	1.1×10^{-3}	2014, 2018
PANDA (GSI)	$\overline{\mathbf{p}}+\mathbf{p}^{\uparrow}$	$\begin{aligned} & 15 \mathrm{GeV} \\ & \sqrt{\mathrm{~s}}=5.5 \end{aligned}$	$\mathrm{x}_{\mathrm{t}}=0.2-0.4$	2×10^{32}	0.07	$\begin{aligned} P_{t} & =90 \% \\ f & =0.22 \end{aligned}$	1.1×10^{-4}	>2018
$\begin{aligned} & \text { PAX } \\ & \text { (GSI) } \end{aligned}$	$\mathbf{p}^{\uparrow}+\overline{\mathbf{p}}$	collider $V_{s}=14$	$\mathrm{x}_{\mathrm{b}}=0.1-0.9$	2×10^{30}	0.06	$\mathrm{P}_{\mathrm{b}}=90 \%$	2.3×10^{-5}	>2020?
NICA (JINR)	$p^{\uparrow}+\mathbf{p}$	collider $V_{s}=\mathbf{2 6}$	$\mathrm{x}_{\mathrm{b}}=0.1-0.8$	1×10^{31}	0.04	$\mathrm{P}_{\mathrm{b}}=70 \%$	6.8×10^{-5}	>2018
PHENIX (RHIC)	$\mathbf{p}^{\uparrow}+\mathbf{p}^{\uparrow}$	collider $V_{s}=500$	$\mathrm{x}_{\mathrm{b}}=0.05-0.1$	2×10^{32}	0.06	$\mathrm{P}_{\mathrm{b}}=60 \%$	3.6×10^{-4}	>2018
SeaQuest (FNAL: E-906)	$p+p$	$\begin{aligned} & 120 \mathrm{GeV} \\ & V_{\mathrm{s}}=15 \end{aligned}$	$\begin{aligned} x_{b} & =0.35-0.9 \\ x_{t} & =0.1-0.45 \end{aligned}$	3.4×10^{35}	---	---	---	2012-2015
Pol tgt DY ${ }^{\ddagger}$ (FNAL: E-1039)	$p+p^{\uparrow}$	$\begin{aligned} & 120 \mathrm{GeV} \\ & V_{\mathrm{s}}=15 \end{aligned}$	$\mathrm{x}_{\mathrm{t}}=0.1-0.45$	4.4×10^{35}	$\begin{aligned} & 0- \\ & 0.2^{*} \end{aligned}$	$\begin{gathered} P_{t}=88 \% \\ f=0.176 \end{gathered}$	0.15	2016
Pol beam DY§ (FNAL: E-1027)	$p^{\uparrow}+p$	$\begin{aligned} & 120 \mathrm{GeV} \\ & \sqrt{\mathrm{~s}=15} \end{aligned}$	$\mathrm{x}_{\mathrm{b}}=0.35-0.9$	2×10^{35}	0.04	$\mathrm{P}_{\mathrm{b}}=60 \%$	1	2018
	${ }^{\ddagger} 8 \mathrm{~cm} \mathrm{NH}_{3}$ target $\quad \S L=1 \times 10^{36} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\left(\mathrm{LH}_{2}\right.$ tgt limited) $/ L=2 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}(10 \%$ of MI beam limited) *not constrained by SIDIS data / \#rFOM = relative lumi ${ }^{*} \mathrm{p}^{2}$ * f^{2} wrt $\mathrm{E}-1027$ ($\mathrm{f}=1$ for pol p beams)							

Conclusions

- After the coming 5-10 years, the hadron physics landscape will have changed
- Nucleon form factors will be done
... meson form factors will likely remain a question
- The valence-x region - where spin effects are centered will be rather thoroughly mapped
... low-x extrapolations will likely remain an issue, but can it ever be resolved?
- Parton OAM is a key issue \& will be assaulted with a great deal of data, but is theory able to reliably interpret them?
- No more milestones! The coming decade of data will no doubt influence the next ones we should write.

Grateful thanks to the many people who contributed slides, and the countless people who made the plots!

