The Hadron Physics Landscape : Next 10 Years

- **12 GeV** polarized e : first beam 2013, commission^g 2014, producⁿ 2015
- Complementary capabilities in 4 Halls
 → broad physics program

- Transv (T) & Longit (L) polarized p beams colliding at $\sqrt{s} = 200$ GeV or 500 GeV
- L core : $A_{LL}^{\pi 0}$ (PHENIX) & A_{LL}^{jet} (STAR) $\rightarrow \Delta g(x)$: $A_{L}^{W\pm}$ at $\sqrt{s} = 500 \text{ GeV} \rightarrow \Delta qbar(x)$
- T core : $A_N \pi^{0,\eta}$, jet ,... \rightarrow Sivers/Collins/Twist-3 mix

- 120 GeV p from Main Injector on p,d,A targets → high-x Drell-Yan
- Production running declared Mar'14

- 190 GeV π⁻ beam on T-polarized
 H target → polarized Drell-Yan
- First beam expected end of 2014

Beam Commissioning to Hall A

Jefferson Lab in Newport News hits major milestone in accelerator upgrade April 30, 2014 | By Tamara Dietrich, tdietrich@dailypress.com | Daily Press

Jefferson Lab in Newport News has reached a "major milestone" in its drive to double the energy of its electron accelerator and become the only facility in the world capable of answering key questions about quarks, the building blocks of matter.

Beam on carbon target in Hall A ; E_{beam} = 6.1 GeV

PAC42 August 2014 Hugh "Mont" Montgomery

Jefferson Lab

12 GeV CEBAF: Three Year Schedule

Pushing to Physics

PAC 42 August 2014 Allison Lung

we hope ...

SOLID detector in Hall A → large acceptance & high rate for parity violation (PVDIS) & polarized SIDIS programs

Forward! Forward! \rightarrow higher η = higher x_{beam} , lower x_{target}

STAR Forward Calorimeter System = EMCal + HCal → forward jets & e/h separaton for Drell-Yan

fsPHENIX = forward spectrom w EMCal, HCal, RICH, tracking → forward jets + identified hadrons and Drell-Yan

Polarized Beam and/or Target w SeaQuest detector

A high-luminosity facility for polarized Drell-Yan

E-1027 MI p[†] beam w polarized source + 1 Siberian Snake

E-1039 SeaQuest with polarized p[↑] target

N.C.R. Makins, QCD Town Mtg, Philadelphia, Sep 13, 2014

Spectroscopy Low-x and the CGC Medium Modifications : the EMC Effect Form Factors

NSAC milestone HP15 (2018)

Installed & Ready for Beam in October

Cosmic Events for Commissioning and Alignment

Low x & the Color Glass Condensate

Study pA \rightarrow nucleus enhances gluon density \rightarrow "effectively" lowers x Forward rapidity \rightarrow high-x quark (beam) vs low-x gluon (target)

The EMC Effect & Short-Range Correlations

SRC: nucleons see strong repulsive core at short distances EMC effect: quark momentum in nucleus is altered

Weinstein et al., PRL 106, 052301 (2011)

EMC & SRC: 5 approved expts to sort it out

Some features :

- exhaustive target scan to vary nuclear properties →
 e.g. local density : ¹H, ²H, ³He, ⁴He, ⁶Li, ⁷Li, ⁹Be, ¹⁰Be, ¹¹B, ¹²C, ⁴⁰Ca, ⁴⁸Ca, Cu
- study isospin
 dependence of effects
- extensive kinematic scan → to x > 3 seeking second 3N-plateau & to Q² ≈ 20

Nucleon Form Factors : 6 Approved Expts

Quark Orbital Angular Momentum

John Arrington

Many calculations able to reproduce the falloff in G_E/G_M

Descriptions differ in details, but nearly all were directly or indirectly related to quark angular momentum

Charged Pion Form Factor

Models from relativistic CQM to hard QCD calculations

E12-06-101: Hall C, 52 days, 2018 (fully comm. SHMS), rating: A (PAC 35)

Parton Distribution Functions :

The Limit $x \rightarrow 1$ of q(x) and $\Delta q(x)$

PDFs in the	$x \rightarrow 1$ predictions	F_2^{n}/F_2^{p}	d/u	A ₁ ⁿ	A ₁ ^p		
limit x→1	SU(6)	2/3	1/2	0	5/9		
What happens at this bizarre limit?	Diquark Model/Feynman	1/4	0	1	1		
	Quark Model/Isgur	1/4	0	1	1		
	Perturbative QCD	3/7	1/5	1	1		
	QCD Counting Rules	3/7	1/5	1	1		
d/u as x→1 plagued by nuclear corrections on D or 3He	BONUS: recoil detec ⁿ	detec ⁿ MARATHON: ³ He / ³ H					
	target <i>d</i> e' y* p p p p p p p p p p p	• extract n/p ratio from ratio of $A=3$ structure functions $\frac{F_2^n}{F_2^p} = \frac{2\mathcal{R} - F_2^{^{3}\text{He}}/F_2^{^{3}\text{H}}}{2F_2^{^{3}\text{He}}/F_2^{^{3}\text{H}} - \mathcal{R}}$					
2 clever strategies at 12 GeV!	slow backward p (p < 100 MeV) \rightarrow ratio of ³ He to ³ H EMC ratios cancels						

 \rightarrow neutron nearly on-shell to ~1% for x < 0.85

 \rightarrow minimize rescattering

 $d/u (x \rightarrow 1)$

Definitive results at last!

Yellow band = current theory uncertainty

NSAC milestone HP14 (2018) \rightarrow unpolarized part

2020+ : PVDIS on the Proton $\rightarrow d/u(x \rightarrow 1)$ with SOLID

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2\pi\alpha}} \left[\mathbf{a}(x) + Y(y) \mathbf{b}(x) \right]$$
$$\alpha^P(x) \approx \frac{u(x) + 0.91d(x)}{u(x) + 0.25d(x)}$$

Deuteron analysis has large nuclear corrections (Yellow)

 A_{PV} for the **proton** has no nuclear corrections \rightarrow complementary to BONUS & MARATHON

The challenge is to get statistical and systematic errors $\sim 2\%$

18

Spin structure at large x

- Spin-dependent PDFs are even less well understood at large x than spin-averaged PDFs
- Predictions for $x \rightarrow 1$ behavior:
 - \rightarrow scalar diquark dominance

$$\frac{\Delta u}{u} \to 1$$
, $\frac{\Delta d}{d} \to -\frac{1}{3}$ $A_1^{p,n} \to 1$

 \rightarrow hard gluon exchange

$$\frac{\Delta u}{u} \to 1 \ , \ \ \frac{\Delta d}{d} \to 1 \qquad \qquad A_1^{p,n} \to 1$$

 \rightarrow spin-flavor symmetry

$$\frac{\Delta u}{u} = \frac{2}{3}, \quad \frac{\Delta d}{d} = -\frac{1}{3} \qquad A_1^p = \frac{5}{9}, \quad A_1^n = 0$$

Spin PDFs almost completely unconstrained for $x \gtrsim 0.6$ *W. Melnitchouk*

A₁ inclusive as $x \rightarrow 1$ from H, D, ³He

Combining A₁ⁿ Hall C & A₁^p CLAS

Drell-Yan : Sea Quark PDFs as x → 1

SeaQuest at FNAL : 2 yr projecⁿ

Parton Distribution Functions :

Gluon and Antíquark Polarízatíon

Longitudinal Data

	√s	L* (pb-1)
2006	200	7
2009	200	25
"	500	10
2011	500	12
2012	500	82
2013	500	300

L* recorded at STAR

pQCD Fits :

(2) reduce x_{min} from 0.05 → 0.02 via √s = 500 GeV & new/near-term forward detectors (e.g. PHENIX MPC)

(3) constrain x-dependence of $\Delta g(x)$ via \approx exclusive final states

(4) forward upgrades : reduce $x_{min} \rightarrow 0.001$

 \rightarrow dijets at STAR & di- π^0 at PHENIX

Δg 2020+

→ reconstruct initial-state parton kinematics

Polarized ³He at RHIC, beyond 2017

Goal: ³He⁺⁺ at 3E12 s⁻¹ with 70% polarization

Tag proton spectator with Roman pots phase II

- Source R&D underway at MIT
- Important for EIC

Thanks to R. Milner

https://indico.bnl.gov/ conferenceProgram.py?confid=405 for proceedings of September 2011 RBRC/ BNL workshop on Opportunities for Polarized He-3 in RHIC and EIC.

Argonne National Laboratory

1st and last search for LO-factorizⁿ edge

LO extractions of **PDF(x)** combinations from π^{\pm} multiplicities

JLab SIDIS : Careful Strategy

(1) Make high-precision scans of $\sigma(x,z,p_T,Q^2)$ with Hall C spectrometers

CLAS12 SIDIS: ∆qbar Statistical Projections

Generalized Parton Distributions:

Spatial Imaging of Partons & their Orbital Angular Momentum hard exclusive processes \rightarrow

Generalized Parton Distributions

DVCS Strategy at JLab-12

(2) Measure DVCS at CLAS in broad kinematic range with polarized & unpol observables

N.C.R. Makins, QCD Town Mtg, Philadelphia, Sep 13, 2014

23/27

^{23/27}

Projected impact on GPD extraction methods

F.-X. Girod

Projected impact on GPD extraction methods

F.-X. Girod

Projection for the Nucleon transverse profile

Precision tomography in the valence region

F.-X. Girod

DVCS Goal 2: Access to L via GPD E

Model predictions (VGG) for different values of Ju & Jd

C12-12-010: CLAS w
 HD-lce Transverse target

• E12-11-003: **CLAS** w

Unpol Deuterium target

TMDs : The Sivers Function

Quark Spin, Orbital Angular Momentum, and Gule Angular Momentum

KehFeh Liu, INT Workshop, Feb 2012

0.254	0.25	2 J Quark Spin	New: add DI <u>Disconnected</u> Insertions
		Qurak OAMGlue AM	→ Pure Sea
	0.49	~ 0.25	The Sea is Orbiting!
	2 I	$L_q \approx 0.23,$ $L_q \approx 0.49 \ (0.0(C))$	CI)+0.49(DI));
	2 J	$I_g \approx 0.25$	

Leptons: clean, surgical tools

- Disentangle distribution (f) and fragmentation (D) functions → measure <u>all process</u>
 - Disentangle quark flavours q → measure as many <u>hadron species</u> H,h as possible

These are the **only** processes where TMD factorization is proven

Nucleon Structure with SoLID-SIDIS

0.5 Х

-0.5

1

0

0.5

Semi-inclusive Deep Inelastic Scattering

program:

Large Acceptance + High Luminosity

- + Polarized targets
- → 4-D mapping of Collins, Sivers, and pretzelocity asymmetries,...

→ Tensor charge of quarks, transversity distributions, TMDs...

 \rightarrow Benchmark test of Lattice QCD, probe QCD Dynamics and quark orbital motion

Pretzelosity \rightarrow **information on OAM**

The Missing Spin Program: Drell-Yan

 $\sum e_q^2 \mathbf{f}_{\mathbf{q}}^{(\mathbf{H}_1)}(x_1) \mathbf{f}_{\overline{\mathbf{q}}}^{(\mathbf{H}_2)}(x_2)$

- Clean access to sea quarks e.g. $\overline{d}(x)/\overline{u}(x)$ at E866/SeaQuest
- Crucial test of TMD formalism
 → sign change of T-odd functions

W reconstruction Strategy

Ingredients for the analysis

- Isolated electron
- neutrino (not measured directly)

W-reconstrucⁿ

achieved!

despite the v!

Hadronic recoil

□ Select events with the W-signature

 \succ Isolated high P_T > 25 GeV electron

> Hadronic recoil with total $P_T > 18$ GeV

 \Box Neutrino transverse momentum is reconstructed from missing P_{T}

$$\vec{P}_T^{\nu} \approx -\sum_{i \in \text{tracks} \atop \text{clusters}} \vec{P}_T^i$$

O Neutrino's longitudinal momentum is reconstructed from the decay kinematics

$$M_W^2 = (E_e + E_v)^2 - (\vec{p}_e + \vec{p}_v)^2$$

S. Fazio - DIS 2014

The Third Spin Program : Drell-Yan & W-production

 $\sum e_q^2 \mathbf{f}_{\mathbf{q}}^{(\mathbf{H}_1)}(x_1) \mathbf{f}_{\overline{\mathbf{q}}}^{(\mathbf{H}_2)}(x_2)$

- Clean access to sea quarks e.g. $\Delta \overline{u}(x), \Delta \overline{d}(x)$ at RHIC
- Crucial test of TMD formalism
 → sign change of T-odd functions
- ★ A complete spin program
 requires multiple hadron species
 → nucleon & meson beams

2020+

Drell-Yan : fsPHENIX and COMPASS-II

John Lojoie

COMPASS, E-1027, E-1039 (and Beyond)

	Beam	Target	Favored	Physics Goals			
	P0I.	P0I.	Quarks	(Sivers Function)			
				sign change	size	shape	L _{sea}
COMPASS $\pi^{-}p^{\uparrow} \rightarrow \mu^{+}\mu^{-}X$	×	~	valence	 	×	×	×
E-1027 $p^{\uparrow} p \to \mu^{+} \mu^{-} X$		×	valence	~	~	~	×
E-1039 $p p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X$	×	~	sea	× v		~	~
E-10XX $p^{\uparrow}p^{\uparrow} \rightarrow \mu^{+}\mu^{-}X$ $\vec{p} \ \vec{p} \rightarrow \mu^{+}\mu^{-}X$	~	~	sea & valence	Transversity, Helicity, Other TMDs			

W. Lorenzon

Planned Polarized Drell-Yan Experiments

Experiment	Particles	Energy (GeV)	$\mathbf{x}_{\mathbf{b}}$ or $\mathbf{x}_{\mathbf{t}}$	Luminosity (cm ⁻² s ⁻¹)	$A_{_{T}}^{\sin\phi_{_{S}}}$	P_{b} or P_{t} (f)	rFOM#	Timeline
COMPASS (CERN)	π^{\pm} + p [↑]	160 GeV √s = 17	$x_t = 0.2 - 0.3$	2 x 10 ³³	0.14	P _t = 90% f = 0.22	1.1 x 10 ⁻³	2014, 2018
PANDA (GSI)	p + p [↑]	15 GeV √s = 5.5	$x_t = 0.2 - 0.4$	2 x 10 ³²	0.07	P _t = 90% f = 0.22	1.1 x 10 ⁻⁴	>2018
PAX (GSI)	$\mathbf{p}^{\uparrow} + \overline{\mathbf{p}}$	collider $\sqrt{s} = 14$	x _b = 0.1 – 0.9	2 x 10 ³⁰	0.06	P _b = 90%	2.3 x 10 ⁻⁵	>2020?
NICA (JINR)	p [↑] + p	collider √s = 26	x _b = 0.1 – 0.8	1 x 10 ³¹	0.04	P _b = 70%	6.8 x 10 ⁻⁵	>2018
PHENIX (RHIC)	$\mathbf{p}^{\uparrow} + \mathbf{p}^{\uparrow}$	collider √s = 500	x _b = 0.05 - 0.1	2 x 10 ³²	0.06	P _b = 60%	3.6 x 10 -4	>2018
SeaQuest (FNAL: E-906)	p + p	120 GeV √s = 15	$x_b = 0.35 - 0.9$ $x_t = 0.1 - 0.45$	3.4 x 10 ³⁵				2012 - 2015
Pol tgt DY [‡] (FNAL: E-1039)	p + p [↑]	120 GeV √s = 15	x _t = 0.1 – 0.45	4.4 x 10 ³⁵	0- 0.2*	P _t = 88% f = 0.176	0.15	2016
Pol beam DY [§] (FNAL: E-1027)	p [↑] + p	120 GeV √s = 15	$x_{b} = 0.35 - 0.9$	2 x 10 ³⁵	0.04	P _b = 60%	1	2018
	 *8 cm NH₃ target § L= 1 x 10³⁶ cm⁻² s⁻¹ (LH₂ tgt limited) / L= 2 x 10³⁵ cm⁻² s⁻¹ (10% of MI beam limited) *not constrained by SIDIS data / *rFOM = relative lumi * P² *f² wrt E-1027 (f=1 for pol p beams) 							

W. Lorenzon (U-Michigan) 8/15/2014

Conclusions

- After the coming 5-10 years, the hadron physics landscape will have changed
- Nucleon form factors will be <u>done</u>
 ... meson form factors will likely remain a question
- The valence-x region where spin effects are centered will be rather thoroughly mapped ... low-x extrapolations will likely remain an issue, but can it ever be resolved?
- Parton **OAM** is a key issue & will be assaulted with a great deal of data, but is theory able to reliably interpret them?
- No more **milestones**! The coming decade of data will no doubt influence the next ones we should write.

Grateful thanks to the many people who contributed slides, and the countless people who made the plots!