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Orthogonal to other speakers (mostly)

Look to the future first, and (mostly) discuss past work that 	

    makes future ideas viable (one measure of importance).  

Many things are left out (sorry!)



Outline

• Factorization for Colliders

•

• Precision Theory,  needed for PDFs, Strong Coupling, …

Conclusion

Non-perturbative and Perturbative

LHC, RHIC, JLab, Fermilab,…, EIC, …

• Hadronization:  single parton, multi-parton & multi-hadron

• New Hadronic probes for quarks and gluons in Jets

• Rapidity and Q2 Evolution, TMDPDFs

• Form Factors for 2-photon contributions

• Factorization Violation
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Non-perturbative Factorization:
parton distributions

d� = fafb � �̂ � F

perturbative cross section

hadronization:

(often with QFT operators)

fragmentation fns.,!
soft hadronization, …

J2

H2

universal hadronic dynamics

universal hadronic functions
via
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perturbative cross section

hadronization:

(often with QFT operators)
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universal hadronic functions
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Perturbative QCD Results:
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fixed order:
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µp � �QCD

µJ � mJ

µS

µJ , µB

µH

µp

E

µS � psoft

µB

Perturbative Factorization:

µH � Q

µB µH µJ µS

hard jet pert. soft beam 

�̂fact = IaIb �H �
�

iJi � S
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for multi-scale problems with fixed # jets

SCET,
pQCD



µJ , µB

µH

µp

E

Perturbative Factorization:

Perturbative Universality

• H determined by hard process, independent of jet radius, etc.  

• Ji , Ia,b splitting and virtual effects for parton i,  	

encode jet dynamics, independent of H

• S soft radiation, all partons contribute, eikonal Feynman rules

Scale dependence          RGE sums up logarithms

µJ µS

hard jet pert. soft beam 

�̂fact = IaIb �H �
�

iJi � S

�

µB µH

for multi-scale problems with fixed # jets

µS

eg.  universal perturbative components for a TMDPDF

universal 
collinear !
dynamics

universal soft dynamics

SCET,
pQCD

log
�µH

µS

�
,…
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Figure 7: Inclusive jet (left) and dijet (right) cross sections for the five different rapidity bins,
for data (markers) and theory (thick lines) using the NNPDF2.1 PDF set.
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pp� jet + X pp� dijets

d� = fafb � �̂NLO � FInclusive Jets
NNPDF NLOJet++ Pythia/

Herwigagreement with  
QCD over many  
orders of magnitude  
up to 2 TeV

(Z.Nagy)

� 30% 1%� 20%5%� 10%
40% (large y)

uncertainty:

CMS, arXiv:1212.6660
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State of the Art Fixed Order pQCD:

O(�3
s)

DIS: O(�3
s) NNLL evolution

pp, ep(jets): mostly NLO

NNLO frontier
gg � gg

pp� tt̄

gg � H + 1-jet

NNLO corrections to pp � 2j 

The first three years of the LHC - MITP 2013 

Inclusive jet pT distribution: scale dependence 
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Motivation for studies of jets produced with a W or 
Z boson 

� ����	������
������	���������!understood*control*region*to*
test*pQCD*calculations;*validation*of*detector*performance*

� *An*irreducible*background*to*SM*measurements*(tt,*single*
top,*VBF,*WW!scattering)*and*new*physics*(Higgs,*SUSY,*etc)*

� Foundation*for*development*of*novel*pQCD*calculations;*
choices*of*scales,*jet!parton*matching*schemes,*and*parton*
showering**
� Alpgen,*Sherpa,*MCFM,*BlackHat!Sherpa,*Madgraph,*etc.*

2"

W+jets: Jet multiplicity 

� Accurate(predictions(require(ME+PS(approach((Alpgen,(MadGraph,(&(
Sherpa);((PS>only(simulations((Pythia)(fail(at(high(jet(multiplicity,(>1(jet(

� Crucial(for(multiple(measurements(and(searches( (e.g.(separation(
between(WW(and(tt;(BSM(searches(using(high(jet(multiplicities)(

� NLO(calculation((BlackHat>Sherpa)(are(superbly(accurate.( 9"

N/N#1%Ratio%

CMS:%W���%

ATLAS:%W���%

Ingredients to jet production at NNLO 
!  Two-loop matrix elements                     

(C. Anastasiou, E.W.N. Glover, C. Oleari, M. Tejeida-Yeomans;                               
Z. Bern, L. Dixon,  A. De Freitas) 

!  Explicit infrared poles from loop integrals 

!  One-loop matrix elements                    
(Z. Kunszt, A. Signer, Z. Trocsanyi) 

!  Explicit infrared poles from loop integral 
!  Implicit infrared poles from real radiation 

!  Tree-level matrix elements 
!  Implicit infrared poles from real radiation 
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Gehrmann-De Ridder, Gehrmann, Glover, Pires!
arXiv:1301.7310

Czakon, Fiedler, Mitov, arXiv:1301.7310

Boughezal, Caola, Melnikov, Petriello, Schulze!
  arXiv:1302.6216

improved theory!
uncertainty

(lots of legs!)

better PDFs
smaller uncertainty
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Figure 6. Ratio of the NLO QCD predictions of NLOJet++ to the measurements of the dijet double-differential cross section as a function of dijet mass in
different ranges of y

�. The results are shown for jets identified using the anti-kt algorithm with radius parameter R = 0.4. The predictions of NLOJet++
using different PDF sets (CT10, HERAPDF1.5, and epATLJet13) are shown. The renormalization and factorization scale choice µ is as described in section 6.
Observed probabilities resulting from the comparison of theory with data are shown considering all m12 bins in each range of y

� separately. The HERAPDF1.5
analysis accounts for model and parameterization uncertainties as well as experimental uncertainties. The theoretical predictions are labelled with exp. only
when the model and parameterization uncertainties are not included.

–
21

–

Figure 2 – The ratio of the theory prediction to the ATLAS jijet data for di↵erent PDFs.

the strange distribution is constrained to be strictly proportional to the d-type sea, resulting in
a 13 parameter fit. Both collaborations also include the HERA DIS data in their fits, as well as
their own data which are reproduced using either fastNLO or APPLgrid.

The resulting gluon distribution from the CMS collaboration can be seen in Fig. 3. This also
shows the fit resulting from just the HERA DIS data shown as the hatched band. For the fits
from both ATLAS and CMS the gluon distribution is harder than that obtained from HERA
data alone, with a with a slightly di↵erent shape and with a significantly reduced uncertainty at
higher-x. Most noticeable is the reduction in the uncertainty at high-x at a scale of 104 GeV2.

4.3 Constraining PDFs with HERAFitter using the CMS inclusive jet data 21

Figure 9: The gluon (top left), sea quark (top right), u quark (middle left), u valence quark
(middle right), d quark (bottom left) and the d valence quark (bottom right) PDFs as a function
of x as derived from HERA inclusive DIS data alone (cyan) and in combination with CMS
inclusive jet data from 2011 (blue hatched). The PDFs are shown at the starting scale Q2 =
1.9 GeV2. Only the total uncertainty of the PDFs is shown.

4.3 Constraining PDFs with HERAFitter using the CMS inclusive jet data 21

Figure 9: The gluon (top left), sea quark (top right), u quark (middle left), u valence quark
(middle right), d quark (bottom left) and the d valence quark (bottom right) PDFs as a function
of x as derived from HERA inclusive DIS data alone (cyan) and in combination with CMS
inclusive jet data from 2011 (blue hatched). The PDFs are shown at the starting scale Q2 =
1.9 GeV2. Only the total uncertainty of the PDFs is shown.

22 4 Study of PDF constraints with HERAFitter

Figure 10: The gluon (top left), sea quark (top right), u quark (middle left), u valence quark
(middle right), d quark (bottom left) and the d valence quark (bottom right) PDFs as a function
of x as derived from HERA inclusive DIS data alone (cyan) and in combination with CMS
inclusive jet data from 2011 (blue hatched). The PDFs are evolved to Q2 = 104 GeV2. Only the
total uncertainty of the PDFs is shown.

Figure 3 – The gluon distribution from the CMS fit; (left) at the starting scale of 1.9 GeV2 and (right) at a scale
of 104 GeV2

The direct tt̄ production cross section is also sensitive to the gluon distribution and measure-
ments have been performed by both ATLAS 18 and CMS 19. Comparisons of the ATLAS data
with theory at NLO suggest that the data may be better described by the HERAPDF rather
than the CT10 PDF, which has a slightly harder gluon distribution from the inclusion of the
Tevatron jet data.

Gerhmann-De Ridder, Gehrmann,Glover, Heinrich;   	

Weinzierle+e� � jets:

Moch, Vermaseren, Vogt; , …

Blackhat collab.,!
Rocket collab., …
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High Precision from event shapes

• Thrust	


!

• C-parameter	


2 jets � � 0
C � 0

Lots of them!  Few examples:

• DIS Thrust & 1-jettiness  (relevant for EIC)

�DIS = 1� 2
Q

�

i�HJ

|�pi · �n|

axes: qB(beam), qJ(jet)

9

FIG. 3: (a) 1-jettiness τa
1 measures the small light-cone component of the momentum in the jet region HJ along the “true” jet

axis qaJ , which is proportional to the jet invariant mass and is thus insensitive at leading order in λ to the transverse momentum
p⊥B of ISR. Thus p⊥B gets averaged over in calculating the τa

1 cross section. (b) 1-jettiness τ b
1 measures the small light-cone

component of pJ along the fixed axis qbJ = q + xP . This projection is sensitive to and balances the transverse momentum p⊥B
of ISR. The transverse momenta of pB and pJ get convolved together in calculating the cross section. Both τa

1 and τ b
1 divide

the final state into hemispheres in the Breit frame. (c) 1-jettiness τ c
1 divides event into back-to-back hemispheres in the CM

frame and projects beam and jet momenta onto nz, n̄z axes. These projections are sensitive to the transverse momentum p⊥B
of ISR. The momentum transfer q has a nonzero transverse component in these coordinates, and the jet and beam momenta
are convolved in p⊥B in calculating the cross section.

not directly required for calculating the objects such as
hard and soft functions that appear in the factorization
theorem. For the other versions of 1-jettiness we consider
below, the reference vector qJ is not aligned exactly with
the jet, and the transverse momentum between qJ and
the jet momentum pJ will be nonzero, as illustrated in
Fig. 3. This will change the structure of the correspond-
ing factorization theorems, introducing convolutions over
the transverse momenta of radiation from the beam and
from the final-state jet.

2. τ b
1 : hemisphere 1-jettiness in the Breit frame

A second way to define 1-jettiness in DIS is

τb1 =
2

Q2

∑

i∈X

min{qbB · pi, qbJ · pi} , (31)

where

qbB
µ
= xPµ , qbJ

µ
= qµ + xPµ . (32)

In this case, qbJ is given exactly by the quantity q + xP
which can be constructed from the electron and proton
momenta k, k′, P , and needs no information about the
jet momentum given by any jet-finding algorithm. Thus
in general qbJ differs by a transverse momentum q⊥J ∼ Qλ
from the vector qaJ used in the τa1 definition of 1-jettiness
we introduced above in Eq. (29). Note that since q =
qbJ − qbB, q itself has zero tranverse momentum q⊥ with
respect to the directions nb

J , n
b
B of qbJ , q

b
B .

This choice of vectors is natural in the Breit frame
(hence the name τb1 ), in which it divides the final state
into back-to-back hemispheres. In the Breit frame,

τb1
Breit
=

1

Q

∑

i∈X

min{n̄z ·pi, nz ·pi} . (33)

This definition directly corresponds to the thrust τQ in
DIS defined in [15] .
We will often work in the CM frame in intermediate

stages of calculation below. Expressing qbB,J in the CM
frame, we find

qbB
µ
= x

√
s
n̄µ
z

2
, (34)

qbJ
µ
= y

√
s
nµ
z

2
+ x(1 − y)

√
s
n̄µ
z

2
+ qµT ,

where q2
T = (1− y)Q2 and qbJ is a massless vector. qbJ in

Eq. (34) can also be written in the form

qbJ
µ
= PT e

Y nµ
z

2
+ PT e

−Y n̄µ
z

2
+ PT n̂µ

T , (35)

where the jet transverse momentum and rapidity are

PT = Q
√
1− y , Y =

1

2
ln

y

x(1 − y)
, (36)

and n̂T is a unit vector in the direction of qT . These
relations can be inverted to give

x =
PT e−Y

√
s− PT eY

, y =
PT eY√

s
. (37)

Equating the 0th components of Eqs. (28) and (35), we
find that

ωb
J = 2PT coshY = [y + x(1− y)]

√
s . (38)

Calculating τb1 in the CM frame groups particles into
non-hemisphere-like regions. Particles with momenta p
are grouped into the beam or jet regions according to
which dot product is smaller:

HB :
x
√
snb

B ·p
2

<
ωb
Jn

b
J ·p
2

,

HJ :
x
√
s nb

B ·p
2

>
ωb
Jn

b
J ·p
2

. (39)

�1 =
2

Q2

�

i

min{qB · pi, qJ · pi},

Dasgupta, Salam;  IS, Tackmann, Waalewijn;  Kang, Mantry, Qiu
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order Ω̄1 (MS) Ω1 (R-gap)

NLL′ 0.264 ± 0.213 0.293 ± 0.203

NNLL 0.256 ± 0.197 0.276 ± 0.155

NNLL′ 0.283 ± 0.097 0.316 ± 0.072

N3LL 0.274 ± 0.098 0.313 ± 0.071

N3LL′ (full) 0.252 ± 0.069 0.323± 0.045

N3LL′
(QCD+mb) 0.238 ± 0.070 0.310 ± 0.049

N3LL′
(pure QCD) 0.254 ± 0.070 0.332 ± 0.045

TABLE V: Theory errors from the parameter scan and cen-
tral values for Ω1 defined at the reference scales R∆ = µ∆ =
2 GeV in units of GeV at various orders. The N3LL′ value
above the horizontal line is our final scan result, while the
N3LL′ values below the horizontal line show the effect of leav-
ing out the QED corrections, and leaving out both the b-mass
and QED respectively. The central values are the average of
the maximal and minimal values reached from the scan.

τ

σ

dσ

dτ

τ

0.300.10 0.15 0.20 0.25
0.0

0.4

0.3

0.2

0.1

Fit at N LL3 ’

theory scan error

DELPHI

ALEPH

OPAL

L3

SLD

for & �

FIG. 13: Thrust distribution at N3LL′ order and Q = mZ

including QED and mb corrections using the best fit values
for αs(mZ) and Ω1 in the R-gap scheme given in Eq. (66). The
pink band represents the perturbative error determined from
the scan method described in Sec. VI. Data from DELPHI,
ALEPH, OPAL, L3, and SLD are also shown.

method. The fit result is shown in comparison with data
from DELPHI, ALEPH, OPAL, L3, and SLD, and agrees
very well. (Note that the theory values displayed are
actually binned according to the ALEPH data set and
then joined by a smooth interpolation.)

Band Method

It is useful to compare our scan method to determine the
perturbative errors with the error band method [26] that
was employed in the analyses of Refs. [20, 22, 25]. In the
error band method first each theory parameter is varied
separately in the respective ranges specified in Tab. III
while the rest are kept fixed at their default values. The
resulting envelope of all these separate variations with
the fit parameters αs(mZ) and Ω1 held at their best fit

Band Band Our scan
method 1 method 2 method

N3LL′ with ΩRgap
1 0.0004 0.0008 0.0009

N3LL′ with Ω̄MS
1 0.0016 0.0019 0.0021

N3LL′ without Smod
τ 0.0018 0.0021 0.0034

O(α3
s) fixed-order 0.0018 0.0026 0.0046

TABLE VI: Theoretical uncertainties for αs(mZ) obtained at
N3LL′ order from two versions of the error band method, and
from our theory scan method. The uncertainties in the R-gap
scheme (first line) include renormalon subtractions, while the
ones in the MS scheme (second line) do not and are therefore
larger. The same uncertainties are obtained in the analysis
without nonperturbative function (third line). Larger uncer-
tainties are obtained from a pure O(α3

s) fixed-order analysis
(lowest line). Our theory scan method is more conservative
than the error band method.

values determines the error bands for the thrust distri-
bution at the different Q values. Then, the perturbative
error is determined by varying αs(mZ) keeping all the-
ory parameters to their default values and the value of
the moment Ω1 to its best fit value. The resulting per-
turbative errors of αs(mZ) for our full N3LL′ analysis in
the R-gap scheme are given in the first line of Tab. VI.
In the second line the corresponding errors for αs(mZ)
in the MS scheme for Ω̄1 are displayed. The left column
gives the error when the band method is applied such
that the αs(mZ) variation leads to curves strictly inside
the error bands for all Q values. For this method it turns
out that the band for the highest Q value is the most
restrictive and sets the size of the error. The resulting
error for the N3LL′ analysis in the R-gap scheme is more
than a factor of two smaller than the error obtained from
our theory scan method, which is shown in the right col-
umn. Since the high Q data has a much lower statistical
weight than the data from Q = mZ , we do not consider
this method to be sufficiently conservative and conclude
that it should not be used. The middle column gives the
perturbative error when the band method is applied such
that the αs(mZ) variation minimizes a χ2 function which
puts equal weight to all Q and thrust values. This sec-
ond band method is more conservative, and for the N3LL′

analyses in the R-gap and the MS schemes the resulting
errors are only 10% smaller than in the scan method that
we have adopted. The advantage of the scan method we
use is that the fit takes into account theory uncertainties
including correlations.

Effects of QED and the bottom mass

Given the high-precision we can achieve at N3LL′ or-
der in the R-gap scheme for Ω1, it is a useful exercise
to examine also the numerical impact of the corrections
arising from the nonzero bottom quark mass and the
QED corrections. In Fig. 14 the distributions of the best
fit points in the αs-2Ω1 plane at N3LL′ in the R-gap
scheme is displayed for pure massless QCD (light green

thrust tail

0.112 0.113 0.114 0.115 0.116 0.117

0.5
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0.7

0.8

0.9

asHmZL

2W1HGeVL
first moment

thrust tail

full N3LL results

1 s-

1 s-

N3LL + O(�3
s)

power corrections

renormalon subtractions

QED b-mass

global fit

e+e� � jets:

4 The strong coupling

The top production data are also sensitive to the strong coupling, or conversely, to the mass top
quark itself. By constraining the top mass to a value, 173.2±1.4 GeV, the CMS collaboration has
extracted the strong coupling using an NNLO fit 19, where the result is 0.1151+0.0033

�0.0032, consistent
with the world average.

15/26
PDF4LHC Meeting – 13/12/13

Running of �
S
(Q) 

Fitted region is split into six

   regions as shown in table and

   αs(MZ) derived for each region.

Using the 2-loop RGE these

   values evolved back to the

   corresponding αs(Q).

The new CMS results on αs 

   are consistent with the energy 

   dependence predicted by the

   RGE.

CMS R32: [Eur.Phys.J. C73 (2013) 2604]

CMS tt cross section: [arXiv:1307.1907]

CMS 3-jet mass: [CMS-PAS-SMP-12-027]

CMS incl. jets: [CMS-PAS-SMP-12-028]
Figure 4 – The strong coupling
measured using the CMS data
compared to measurements from
HERA and the Tevatron.

In addition, CMS has also extracted the strong coupling from several jet measurements.
Fig. 4 shows the strong coupling extracted using from these jet data for the ratio of 3-to-2 jet
production 20, the 3-jet mass 21, and inclusive jet production 17. In addition, the value from the
fit using the top data is also shown. The running of the strong coupling can clearly been seen up
to scales nearly an order of magnitude higher than measured previously at either HERA 22,23,24

or the Tevatron 25,26,27.
The value of the strong coupling measured using the CMS inclusive jet data16 is 0.1185+0.0065

�0.0041
again consistent with the world average.

5 Photon production

A measuring that has the potential to sample the hard subprocess directly is that of prompt
photon production. As in the case of jet production, the dominant production mechanism is
quark-gluon scattering. This process has the potential to also constrain the gluon distribution,
although in this case it is also more sensitive to the contribution from u-g scattering because of
the larger charge on the u-quark. A sensitivity study from ATLAS 28 using the data on inclusive
direct photon production 29 suggests that the softer gluon distribution from the ABM11 PDF is
able to describe the shape of the cross-section better, but with a lower normalisation. Taking
into consideration the systematic uncertainties, all the PDFs fit the data reasonably well, with
the harder gluon distribution from CT10 being less favoured.

6 Heavy Electroweak boson production

With the production of heavy Electroweak bosons, it is possible to better constrain the valence
and sea quark distributions. Data from the ATLAS 30 and CMS 31 collaborations on Drell-
Yan production are becoming rather precise, particularly in the region of the Z resonance, and
suggest that the NNLO cross section with a number PDFS fitted at NNLO tend to lie somewhat
below the data for central rapidities.

pp� jets:

37

6 Summary
An extensive QCD study has been performed on the CMS inclusive jet data published in [1].
In the course of this study it was found that the advertized correlations of the experimental
uncertainties reflect the detector characteristics adequately and parameter fits could reliably be
performed within each rapidity region. When combining multiple regions in rapidity though it
was discovered that the overly strong assumption of full correlation in y needed to be revisited
in case of one uncertainty source of the jet energy scale and a slightly modified procedure,
which is described and applied in this work, is suggested.

Using the HERAFitter tool [15, 39, 40] the impact of the inclusive jet measurement on the par-
ton distribution functions of the proton is investigated in detail. It could be demonstrated that
the inclusion of the CMS inclusive jet data in comparison to HERA inclusive DIS data alone
significantly reduces the uncertainty on the gluon distribution for fractional parton momenta
x & 0.01. At the same time it was shown that in particular model and parameterization uncer-
tainties of the up and down quark distributions decrease for x larger than ⇡ 0.3. The effect is
more pronounced in the case of the up quark.

The inclusion of the jet data also allows to fit the strong coupling constant as a free parameter
in addition to the PDFs, which is not possible with HERA inclusive DIS data alone because of
too large correlations between aS(MZ) and the gluon PDF. The result is consistent with ded-
icated fits of aS(MZ) employing global fit PDFs, where the gluon is much better constrained
through the data of various experiments and multiple observables. The PDF sets CT10 [14]
and MSTW2008 [16, 17] are used for this purpose at NLO evolution order. All fits with the
MSTW2008-NLO, MSTW2008-NNLO, and NNPDF2.1-NNLO PDFs give results compatible to
the ones achieved with CT10. Cross checks with CT10 PDFs at NNLO evolution order or with
additional corrections for parton shower effects did not exhibit any difference outside expecta-
tions. The result for the strong coupling constant then reads:
aS(MZ) = 0.1185 ± 0.0019 (exp.)± 0.0028 (PDF)± 0.0004 (NP)+0.0055

�0.0022 (scale).

To test the running of the strong coupling all fits have also been carried out for six bins in inclu-
sive jet pT separately, where the scale Q of aS(Q) is identified with pT. The observed behaviour
of aS(Q) is consistent with the momentum scale dependence predicted by the renormalization
group equation of QCD and extend the H1, ZEUS, and D0 results to the 1 TeV region.

30 9. Quantum chromodynamics

Preliminary determinations of αs from CMS data on the ratio of inclusive 3-jet to
2-jet cross sections [259], at NLO, and from the top-quark cross section [301], in
NNLO, quote values of αs(M2

Z) = 0.1148± 0.0014(exp.)± 0.0018(PDF)+0.0050
−0.0000(scale) and

αs(M2
Z) = 0.1151+0.0033

−0.0032, respectively, indicating many new results to be expected for
inclusion in upcoming reviews.

9.3.11. Electroweak precision fits :
The N3LO calculation of the hadronic Z decay width was used in a revision of the global
fit to electroweak precision data [349], resulting in αs(M2

Z) = 0.1193± 0.0028, claiming a
negligible theoretical uncertainty. For this Review the value obtained in Sec. Electroweak
model and constraints on new physics from data at the Z-pole, αs(M2

Z) = 0.1197± 0.0028
will be used instead, as it is based on a more constrained data set where QCD corrections
directly enter through the hadronic decay width of the Z. We note that all these
results from electroweak precision data, however, strongly depend on the strict validity
of Standard Model predictions and the existence of the minimal Higgs mechanism to
implement electroweak symmetry breaking. Any - even small - deviation of nature from
this model could strongly influence this extraction of αs.

0.11 0.12 0.13
αα    ((ΜΜ    ))s ΖΖ

Lattice
DIS 
e+e- annihilation

τ-decays 

Z pole fits 

Figure 9.3: Summary of values of αs(M2
Z) obtained for various sub-classes

of measurements (see Fig. 9.2 (a) to (d)). The new world average value of
αs(M2

Z) = 0.1185 ± 0.0006 is indicated by the dashed line and the shaded band.

9.3.12. Determination of the world average value of αs(M2
Z) :

Obtaining a world average value for αs(M2
Z) is a non-trivial exercise. A certain

arbitrariness and subjective component is inevitable because of the choice of measurements
to be included in the average, the treatment of (non-Gaussian) systematic uncertainties
of mostly theoretical nature, as well as the treatment of correlations among the various
inputs, of theoretical as well as experimental origin.

We have chosen to determine pre-averages for classes of measurements which are
considered to exhibit a maximum of independence between each other, considering
experimental as well as theoretical issues. These pre-averages are then combined to the
final world average value of αs(M2

Z), using the χ2 averaging method and error treatment
as described above. The five pre-averages are summarized in Fig. 9.3; we recall that these

August 21, 2014 13:18
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with ⇥2/Ndof = 22.0/20 at minimum. The experimental uncertainty contains the statistical,
JES, and unfolding sources (Eq. (4)), with the JES uncertainty being the dominant one.

The contribution of PDFs to the uncertainty of the measurement is evaluated by repeating the
fit for each of the 100 PDF replicas of the NNPDF2.1 set at the relevant value for �S(MZ). In
this way 100 determinations of �S(MZ) are obtained, whose distribution corresponds to the
propagation of the underlying probability density from the PDFs to the fitted strong coupling.
The PDF uncertainty of the measurement is then computed as the standard deviation of this
distribution. A more detailed description of the method can be found in Ref. [39].

The uncertainties due to the renormalization and factorization scales are treated separately by
varying the default choice of µr = µ f = ⇤pT1,2⌅ between ⇤pT1,2⌅/2 and 2⇤pT1,2⌅ in six combi-
nations as explained in Section 4. The ⇥2 minimization with respect to �S(MZ) is repeated for
these six combinations. The contribution from the µr, µ f scale variations to the uncertainty in
the measurement is evaluated by considering the differences between the NNPDF2.1 �S(MZ)
central value and the highest and lowest values found in these six scale combinations. Out
of all scale combinations the lowest �S(MZ) value corresponds to the default scale choice of
µr = µ f = ⇤pT1,2⌅ and the highest to the scale choice of µr = µ f = ⇤pT1,2⌅/2. The frequent
observation of asymmetric scale uncertainties with larger downward uncertainties in the case
of NLO cross sections is transformed into a purely upward uncertainty for the ratio, as can be
seen in Table 2.

Table 2: The values of �S(MZ) at the central scale and for the six scale factor combinations.

µr/⇤pT1,2⌅ µ f /⇤pT1,2⌅ �S(MZ)± (exp.) ⇥2/Ndof

1 1 0.1148 ± 0.0014 22.0/20
1/2 1/2 0.1198 ± 0.0021 30.6/20
1/2 1 0.1149 ± 0.0014 22.2/20

1 1/2 0.1149 ± 0.0014 22.2/20
1 2 0.1150 ± 0.0015 21.9/20
2 1 0.1159 ± 0.0014 20.7/20
2 2 0.1172 ± 0.0018 21.3/20

The final result is

�S(MZ) = 0.1148 ± 0.0014 (exp.) ± 0.0018 (PDF)+0.0050
�0.0000 (scale), (6)

in agreement with the world average value of �S(MZ) = 0.1184 ± 0.0007 [4], with the Tevatron
results [5, 6, 40], and a recent result obtained with LHC data [7].

The determination of �S(MZ), which is based on the NNPDF2.1 PDF set, is also in agreement
with the results obtained using the MSTW2008 or CT10 PDF sets

MSTW2008: �S(MZ) = 0.1141 ± 0.0022 (exp.),
CT10: �S(MZ) = 0.1135 ± 0.0019 (exp.),

(7)

with ⇥2/Ndof = 20.6/20 and 21.1/20, respectively. If PDF sets with NLO evolution are used
instead the impact on the results of the fits to the ratio observable R32 is negligible. This is
in contrast to fits to cross sections, where NNLO PDF sets usually lead to smaller values of

PDG(2013)=Lattice(HPQCD):

Becher & Schwartz	

Abbate et.al.



13

Strong Coupling (Future @ EIC)
C. Glasman [1110.0016]  
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Hadronization
• Single Parton Fragmentation functions (covered elsewhere)

• Double Parton Fragmentation functions

Key measurements for current and future NP program

      production

Ma, Qiu, Sterman, Kang
Fleming, Leibovich, Mehen

May 9, 2013 Zhongbo Kang, LANL

Understand huge high order contributions - II

! LO in strong coupling αs but higher power in 1/pT:

! NLO in αs but lower power in 1/pT:
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Understand huge high order contributions - III

! NNLO contribution - even higher power in αs but even lower power in 
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! There are two expansion:        expansion and          expansion

! If one only cares about the        expansion, then          will all mix up 
in different orders, the perturbative series will not be stable
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      NRQCD:  color singlet and octet production
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dp2
T

= d�̂AB�iX �DH/i + d�̂AB�QQ̄X �DH/QQ̄ + . . .

color singlet

color octet

color octet color singlet

D’s calculable 	

via constant	

NRQCD 	

matrix elts.



16

7

Out[842]=

z=0.3 z=0.5 z=0.8

G g

60 80 100 120 140 160 180 200
0.020

0.025

0.030

0.035

60 80 100 120 140 160 180 200
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.019

60 80 100 120 140 160 180 200
0.000

0.005

0.010

0.015

EHGeVL EHGeVL EHGeVL
FIG. 3. The energy dependence of the four di↵erent contributions to the gluon FJF for fixed z = 0.3, 0.5, and 0.8. Color

coding is the same as in Figs. 1, 4. For readability, we have scaled the 3P (8)
J function down by a factor of 5 and 3S(1)

1 down by

2.

Out[384]=

3S1
H8L 3PJ

H8L 1S0
H8L Charm Quark Fragmentation

<
z
3

>
ê<z

2
>

60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

Jet Energy HGeVL Jet Energy HGeVL Jet Energy HGeVL Jet Energy HGeVL

<
z
4

>
ê<z

3
>

60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

Jet Energy HGeVL Jet Energy HGeVL Jet Energy HGeVL Jet Energy HGeVL

<
z
5

>
ê<z

4
>

60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

Jet Energy HGeVL Jet Energy HGeVL Jet Energy HGeVL Jet Energy HGeVL

<
z
6

>
ê<z

6
>

60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

Jet Energy HGeVL Jet Energy HGeVL Jet Energy HGeVL Jet Energy HGeVL
FIG. 4. Ratios of successive moments as a function of the jet energy. See text for explanation.

moments have power to discriminate between various production mechanisms, in particular, we find
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moments have power to discriminate between various production mechanisms, in particular, we find
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(using Global NRQCD fit)
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(see also Liu’s talk, Jet-Sivers & Jet-Collins at EIC)
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Hadronization
• Collective Hadronization of partons in a Jet

In general a complicated map:

Test our understanding of hadronization 	

with more inclusive measurements 	

e = event shapes in                             :

{pparton
i },�QCD =� {phadron

j }
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In many cases:  	
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= calculable

Dokshitzer, Webber, Wicke, Salam, Akhoury, Zakarhov, 
Korchemsky, Movilla et.al., Lee, Sterman, Mateu et.al. 

via QFT
but does depend on treatment of 	

hadron masses
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Jet Substructure
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Jet Substructure
Measure the quantum numbers of the hard parton that !
produces a jet?

•

Quarks versus Gluons?    Electric Charge?
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Figure 3: Left: Distribution of C(0.2)
1 for quark jets (purple) and gluon jets (orange) using

Pythia dijet samples. The sample consists of anti-kT jets with radius R = 0.6 and transverse

momentum in the range [400, 500] GeV. Right: Quark versus gluon discrimination curves

using C(�)
1 for several values of � in Pythia. Also plotted is the leading log approximation

for the discrimination curve, Eq. (3.8).
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Figure 4: Gluon rejection rates at 50% quark e⇥ciency in Pythia, as a function of �.

Left: fixing the pT range to be [400, 500] GeV and sweeping the value of R0. Right: fixing

R0 = 0.6 and sweeping the pT range. For all of these cases, small values of � yield the best

discrimination.

of R0 = 0.4, 0.6, and 0.8. Because our broad conclusions hold for all samples generated, we

only show representative plots to illustrate the quark/gluon performance of C1.

In Fig. 3a, we plot the distribution of C(0.2)
1 for jets initiated by quarks and gluons with

– 20 –

Larkoski et.al. !
 arXiv:1305.0007

tough, but maybe
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Jet Charge

Distinguishing charge 
Measure the pT-weighted jet charge: 

April 24, 2013 Matthew Schwartz 
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Jet Charge at the LHC

David Krohn∗ and Matthew D. Schwartz†
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Tongyan Lin‡
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Wouter J. Waalewijn§
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Knowing the charge of the parton initiating a light-quark jet could be extremely useful both for
testing aspects of the Standard Model and for characterizing potential beyond-the-Standard-Model
signals. We show that despite the complications of hadronization and out-of-jet radiation such as
pile-up, a weighted sum of the charges of a jet’s constituents can be used at the LHC to distinguish
among jets with different charges. Potential applications include measuring electroweak quantum
numbers of hadronically decaying resonances or supersymmetric particles, as well as Standard Model
tests, such as jet charge in dijet events or in hadronically-decaying W bosons in tt̄ events. We
develop a systematically improvable method to calculate moments of these charge distributions by
combining multi-hadron fragmentation functions with perturbative jet functions and pertubative
evolution equations. We show that the dependence on energy and jet size for the average and width
of the jet charge can be calculated despite the large experimental uncertainty on fragmentation
functions. These calculations can provide a validation tool for data independent of Monte-Carlo
fragmentation models.

The Large Hadron Collider (LHC) at CERN provides
an opportunity to explore properties of the Standard
Model in unprecedented detail and to search for physics
beyond the Standard Model in previously unfathomable
ways. The exquisite detectors at atlas and cms let us
go beyond treating jets simply as 4-momenta to treating
them as objects with substructure and quantum num-
bers. A traditional example is whether a jet was likely
to have originated from a b-parton. At the LHC, one
can additionally explore whether a jet has subjet con-
stituents, as from a boosted heavy object decay [1, 2],
or whether it originated from a quark or gluon [3]. See
Ref. [4] for a recent review of jet substructure. Here we
consider the feasibility of measuring the electric charge
of a jet.

The idea of correlating a jet-based observable to the
charge of the underlying hard parton has a long his-
tory. In an effort to determine the extent to which jets
from hadron collisions were similar to jets from leptonic
collisions, Field and Feynman [5] argued that aggregate
jet properties such as jet charge could be measured and
compared. The subsequent measurement at Fermilab [6]
and CERN [7] in charged-current deep-inelastic scatter-
ing experiments showed clear up- and down-quark jet
discrimination, confirming aspects of the parton model.
Another important historical application was the light-
quark forward-backward asymmetry in e+e− collisions, a
precision electroweak observable [8]. Despite its histori-
cal importance, there seem to have been no attempts yet
at measuring the charge of light-quark jets at the LHC.

Most experimental studies of jet charge measured vari-
ants of a momentum-weighted jet charge. We define the

pT -weighted jet charge for a jet of flavor i as
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where the sum is over all particles in the jet, Qj is the

integer charge of the color-neutral object observed, pjT
is the magnitude of its transverse momentum and κ is a
free parameter. A common variant uses energy instead
of pT . Values of κ between 0.2 and 1 have been used in
experimental studies [6, 8].
In hadron-hadron collisions at high energy, such as at

the LHC, the particle multiplicities in the final state are
significantly larger than at low energy and at e+e− or
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Knowing the charge of the parton initiating a light-quark jet could be extremely useful both for
testing aspects of the Standard Model and for characterizing potential beyond-the-Standard-Model
signals. We show that despite the complications of hadronization and out-of-jet radiation such as
pile-up, a weighted sum of the charges of a jet’s constituents can be used at the LHC to distinguish
among jets with different charges. Potential applications include measuring electroweak quantum
numbers of hadronically decaying resonances or supersymmetric particles, as well as Standard Model
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combining multi-hadron fragmentation functions with perturbative jet functions and pertubative
evolution equations. We show that the dependence on energy and jet size for the average and width
of the jet charge can be calculated despite the large experimental uncertainty on fragmentation
functions. These calculations can provide a validation tool for data independent of Monte-Carlo
fragmentation models.
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bers. A traditional example is whether a jet was likely
to have originated from a b-parton. At the LHC, one
can additionally explore whether a jet has subjet con-
stituents, as from a boosted heavy object decay [1, 2],
or whether it originated from a quark or gluon [3]. See
Ref. [4] for a recent review of jet substructure. Here we
consider the feasibility of measuring the electric charge
of a jet.

The idea of correlating a jet-based observable to the
charge of the underlying hard parton has a long his-
tory. In an effort to determine the extent to which jets
from hadron collisions were similar to jets from leptonic
collisions, Field and Feynman [5] argued that aggregate
jet properties such as jet charge could be measured and
compared. The subsequent measurement at Fermilab [6]
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discrimination, confirming aspects of the parton model.
Another important historical application was the light-
quark forward-backward asymmetry in e+e− collisions, a
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is the magnitude of its transverse momentum and κ is a
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Model in unprecedented detail and to search for physics
beyond the Standard Model in previously unfathomable
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go beyond treating jets simply as 4-momenta to treating
them as objects with substructure and quantum num-
bers. A traditional example is whether a jet was likely
to have originated from a b-parton. At the LHC, one
can additionally explore whether a jet has subjet con-
stituents, as from a boosted heavy object decay [1, 2],
or whether it originated from a quark or gluon [3]. See
Ref. [4] for a recent review of jet substructure. Here we
consider the feasibility of measuring the electric charge
of a jet.

The idea of correlating a jet-based observable to the
charge of the underlying hard parton has a long his-
tory. In an effort to determine the extent to which jets
from hadron collisions were similar to jets from leptonic
collisions, Field and Feynman [5] argued that aggregate
jet properties such as jet charge could be measured and
compared. The subsequent measurement at Fermilab [6]
and CERN [7] in charged-current deep-inelastic scatter-
ing experiments showed clear up- and down-quark jet
discrimination, confirming aspects of the parton model.
Another important historical application was the light-
quark forward-backward asymmetry in e+e− collisions, a
precision electroweak observable [8]. Despite its histori-
cal importance, there seem to have been no attempts yet
at measuring the charge of light-quark jets at the LHC.
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ants of a momentum-weighted jet charge. We define the
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integer charge of the color-neutral object observed, pjT
is the magnitude of its transverse momentum and κ is a
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The Large Hadron Collider (LHC) at CERN provides
an opportunity to explore properties of the Standard
Model in unprecedented detail and to search for physics
beyond the Standard Model in previously unfathomable
ways. The exquisite detectors at atlas and cms let us
go beyond treating jets simply as 4-momenta to treating
them as objects with substructure and quantum num-
bers. A traditional example is whether a jet was likely
to have originated from a b-parton. At the LHC, one
can additionally explore whether a jet has subjet con-
stituents, as from a boosted heavy object decay [1, 2],
or whether it originated from a quark or gluon [3]. See
Ref. [4] for a recent review of jet substructure. Here we
consider the feasibility of measuring the electric charge
of a jet.

The idea of correlating a jet-based observable to the
charge of the underlying hard parton has a long his-
tory. In an effort to determine the extent to which jets
from hadron collisions were similar to jets from leptonic
collisions, Field and Feynman [5] argued that aggregate
jet properties such as jet charge could be measured and
compared. The subsequent measurement at Fermilab [6]
and CERN [7] in charged-current deep-inelastic scatter-
ing experiments showed clear up- and down-quark jet
discrimination, confirming aspects of the parton model.
Another important historical application was the light-
quark forward-backward asymmetry in e+e− collisions, a
precision electroweak observable [8]. Despite its histori-
cal importance, there seem to have been no attempts yet
at measuring the charge of light-quark jets at the LHC.

Most experimental studies of jet charge measured vari-
ants of a momentum-weighted jet charge. We define the

pT -weighted jet charge for a jet of flavor i as
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κ =
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where the sum is over all particles in the jet, Qj is the

integer charge of the color-neutral object observed, pjT
is the magnitude of its transverse momentum and κ is a
free parameter. A common variant uses energy instead
of pT . Values of κ between 0.2 and 1 have been used in
experimental studies [6, 8].
In hadron-hadron collisions at high energy, such as at

the LHC, the particle multiplicities in the final state are
significantly larger than at low energy and at e+e− or
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κ for various parton flavors with
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Some properties are calculable
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Interpretation

I At next-to-leading order:

⇤Qq
�⌅ = ⇥Jqq(ER,⇥, µ = ER)

�

h

Qh
⇥Dh
q (⇥, µ = ER)

I ER dependence from moment-space evolution:

µ
d

dµ
⇥Dh
i (⇥, µ) =

�

j

�s(µ)

⇤
⇥Pji(⇥) ⇥Dh

j (⇥, µ) ,

I Mixing into gluons will vanish, since Dh+

g � Dh�

g = 0

µ ⇥ ER µ ⇥ �QCD

I Showering starts at jet scale not hard scale
I Perturbative splittings at beginning of shower
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D̃h
q (�, µ) =

� 1

0
dx x�Dh

q (x, µ)

Involves moment of frag. functions
jet energy E & jet radius R

Pythia:
d-quarks
u-quarks

pT -weighted:

4

this ratio. Therefore

⟨Qq
κ⟩ =

1

16π3

J̃qq(E,R,κ, µ)

Jq(E,R, µ)

∑

h

QhD̃
h
q (κ, µ) , (5)

with J̃ij related to Jij by a Mellin-transform as in

Eq. (2). By charge conjugation
∑

h QhD̃h
g (κ, µ) = 0,

so in particular ⟨Qg
κ⟩ = 0. We have checked that the

µ-dependence of Jij/Ji exactly compensates for the µ-
dependance of the fragmentation functions at order αs.
We have written both Ji(E,R, µ) and Jij(E,R, x, µ)

as if they depend on the energy E and size R of the
jet, however, these functions only give a valid description
to leading power of a single scale corresponding to the
transverse size of the jet. Here we use the e+e− version
of anti-kT jets of size R, for which the natural scale is
µj = 2E tan(R/2) [15]. We can therefore calculate the
average jet charge by evaluating the Mellin-moments of
fragmentation functions at the scale µj and multiplying
by the jet functions.
Since only one linear combination of fragmentation

functions appears in Eq.(5), the theoretical prediction
is not significantly limited by the large uncertainty on
Dh

j (κ, µ). One can simply measure Dh
j (κ, µ) by observ-

ing the average jet charge for each flavor at one value for
µ and then using the theoretical calculation to predict
it at other values. In the absence of data, we simulate
such a comparison using pythia. The result is shown in
Figure 6 for various values of κ and R, and normalized at
a reference point. Already we can see a clear agreement
between the theory and pythia.
To calculate other properties of the jet charge dis-

tribution requires correlations among hadrons. For ex-
ample, we can consider the width of the jet charge,
(Γi

κ)
2 = ⟨Qi

κ⟩
2 − ⟨(Qi

κ)
2⟩. This depends on the moment

〈
(Qi

κ)
2
〉
=

∑

n

∑

h1,...,hn

∫
dz1 · · ·dzn (Q1z

κ
1 + · · ·+Qnz

κ
n)

2

×
1

σjet

dnσh1···hn∈jet

dz1 · · · dzn
, (6)

where the sum runs over all hadronic final states. After
integrating over most of the zi and including a factor of
1
2 for identical hadrons, this simplifies to

〈
(Qi

κ)
2
〉
=

∫
dz z2κ

∑

h

Q2
h

1

σjet

dσh∈jet

dz
(7)

+

∫
dz1 dz2 z

κ
1 z

κ
2

∑

h1,h2

Qh1
Qh2

1

σjet

dσh1h2∈jet

dz1 dz2
.

The first term on the right hand side can be expressed
in terms of products of fragmentation functions and jet
functions as for

〈
Qi

κ

〉
. The second term can be expressed

in terms of something we call a dihadron fragmenting jet
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FIG. 6. Comparison of theory prediction (bands) for the av-
erage (top) and width (bottom) of the jet charge distribution
to pythia (squares and circles for d and u quarks) for e+e−

collisions. Bands show uncertainty from varying the factoriza-
tion scale by a factor of 2. Normalizing to 1 at E = 100 GeV
and R = 0.5 removes the dependence on the nonperturbative
input and quark flavor.

function, Gh1h2

i . Its matching onto (dihadron) fragmen-
tation functions is given by

Gh1h2

i (E,R, z1, z2, µ) (8)

=
∑

j

∫
du

u2
Jij(E,R, u, µ)Dh1h2

j

(z1
u
,
z2
u
, µ

)

+
∑

j,k

∫
du

u

dv

v
Jijk(E,R, u, v, µ)Dh1

j

(z1
u
, µ

)
Dh2

k

(z2
v
, µ

)
,

The second term is due to a perturbative parton splitting
before hadronization and only starts at 1-loop order,

J (1)
ijk (E,R, u, v, µ) = J (1)

ij (E,R, u, µ)δ(1−u−v)δk,a(ij) ,

(9)

where δk,a(ij) indicates that the flavor k is completely
fixed by ij. E.g. a(qq) = g, a(gq) = q̄. We then find

〈
(Qq

κ)
2
〉
=

1

16π3

∑

j

J̃qj(E,R, 2κ, µ)

Jq(E,R, µ)

[∑

h

Q2
hD̃

h
j (2κ, µ)

+
∑

h1,h2

Qh1
Qh2

D̃h1h2

j (κ,κ, µ)
]
. (10)

(For a gluon jet, which we do not consider here, there is a
contribution from the last line of Eq. (8) corresponding to
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By using observables that only depend on charged particles (tracks), one can e�ciently suppress
pile-up contamination at the LHC. Such measurements are not infrared safe in perturbation theory,
so any calculation of track-based observables must account for hadronization e↵ects. We develop a
formalism to perform these calculations in QCD, by matching partonic cross sections onto new non-
perturbative objects called track functions which absorb infrared divergences. The track function
Ti(x) describes the energy fraction x of a hard parton i which is converted into charged hadrons. We
give a field-theoretic definition of the track function and derive its renormalization group evolution,
which is in excellent agreement with the Pythia parton shower. We then perform a next-to-
leading order calculation of the total energy fraction of charged particles in e+e� ! hadrons. To
demonstrate the implications of our framework for the LHC, we match the Pythia parton shower
onto a set of track functions to describe the track mass distribution in Higgs plus one jet events.
We also show how to reduce smearing due to hadronization fluctuations by measuring dimensionless
track-based ratios.

Jets are collimated sprays of particles that arise from
the fragmentation of energetic quarks and gluons. Nearly
every measurement at the Large Hadron Collider (LHC)
involves jets in some way, either directly as probes of
physics in and beyond the Standard Model, or indirectly
as a source of backgrounds and systematic uncertainties.
In order to predict jet-based observables using quantum
chromodynamics (QCD), one typically performs infrared-
and collinear-safe (IRC safe) jet measurements which in-
volve only the kinematics of the jet constituents [1]. In
particular, IRC safe jet measurements do not distinguish
between charged and neutral particles, despite the fact
that, for example, charged pions (⇡±) are measured us-
ing both tracking and calorimetry whereas neutral pions
(⇡0) are measured using calorimetry alone.

In this letter, we develop the theoretical formalism to
calculate track-based observables, which depend on the
kinematics of charged particles alone but not on their in-
dividual properties or multiplicities. The experimental
motivation for track-based measurements is that track-
ing detectors o↵er better pointing and angular resolution
than calorimetry. By only using tracks, one can sub-
stantially mitigate the e↵ects of pileup (multiple colli-
sion events in a single bunch crossing) which is becom-
ing more relevant as the LHC achieves higher luminosity
(see e.g. [2–6] for alternative approaches). In addition,
tracks can aid in jet substructure studies where the an-
gular energy distribution in the jet discriminates between
di↵erent jet types [7, 8]. While we focus on charged par-
ticles, this formalism applies to any (otherwise) IRC safe
measurement performed only on a subset of particles.

To describe track-based observables in QCD, we in-
troduce the track function Ti(x, µ). A parton (quark or
gluon) labelled by i with four-momentum p

µ
i hadronizes

into charged particles with total four-momentum p

µ
i ⌘

xp

µ
i + O(⇤QCD). The distribution in the energy fraction

0  x  1 is the track function and is by definition nor-
malized

Z 1

0
dx Ti(x, µ) = 1 . (1)

The track function is similar to a fragmentation function
(FF) or a parton distribution function (PDF) in that it is
a fundamentally non-perturbative object that absorbs in-
frared (IR) divergences in partonic calculations. Like FFs
and PDFs, the track function has a well-defined depen-
dence on the renormalization group (RG) scale µ through
a DGLAP-type evolution [9–13], though the specific evo-
lution is more reminiscent of the jet charge distribution
[14, 15]. For the observables we consider, each parton
has its own independent track function. Hadronization
correlations are captured by power corrections (beyond
the scope of this letter).

Consider the cross section for an IRC safe observable
e measured using partons

d�

de

=
X

N

Z
d⇧N

d�N

d⇧N
�[e � ê({p

µ
i })] , (2)

where we drop possible convolutions with PDFs to keep
the notation simple. Here, ⇧N denotes N -body phase
space, d�N/d⇧N is the corresponding partonic cross sec-
tion, and ê({pi}) implements the measurement on the
partonic four-momenta p

µ
i . Since e is an IRC safe ob-

servable, the KLN theorem [16, 17] guarantees a cancel-
lation of final state IR divergences between real and vir-
tual diagrams. The cross section for the same observable
measured using only tracks is

d�

de

=
X

N

Z
d⇧N

d�̄N

d⇧N

Z NY

i=1

dxi Ti(xi) �[ē � ê({xip
µ
i })],

(3)
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the fragmentation of energetic quarks and gluons. Nearly
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involves jets in some way, either directly as probes of
physics in and beyond the Standard Model, or indirectly
as a source of backgrounds and systematic uncertainties.
In order to predict jet-based observables using quantum
chromodynamics (QCD), one typically performs infrared-
and collinear-safe (IRC safe) jet measurements which in-
volve only the kinematics of the jet constituents [1]. In
particular, IRC safe jet measurements do not distinguish
between charged and neutral particles, despite the fact
that, for example, charged pions (⇡±) are measured us-
ing both tracking and calorimetry whereas neutral pions
(⇡0) are measured using calorimetry alone.

In this letter, we develop the theoretical formalism to
calculate track-based observables, which depend on the
kinematics of charged particles alone but not on their in-
dividual properties or multiplicities. The experimental
motivation for track-based measurements is that track-
ing detectors o↵er better pointing and angular resolution
than calorimetry. By only using tracks, one can sub-
stantially mitigate the e↵ects of pileup (multiple colli-
sion events in a single bunch crossing) which is becom-
ing more relevant as the LHC achieves higher luminosity
(see e.g. [2–6] for alternative approaches). In addition,
tracks can aid in jet substructure studies where the an-
gular energy distribution in the jet discriminates between
di↵erent jet types [7, 8]. While we focus on charged par-
ticles, this formalism applies to any (otherwise) IRC safe
measurement performed only on a subset of particles.

To describe track-based observables in QCD, we in-
troduce the track function Ti(x, µ). A parton (quark or
gluon) labelled by i with four-momentum p

µ
i hadronizes

into charged particles with total four-momentum p

µ
i ⌘

xp

µ
i + O(⇤QCD). The distribution in the energy fraction

0  x  1 is the track function and is by definition nor-
malized

Z 1

0
dx Ti(x, µ) = 1 . (1)

The track function is similar to a fragmentation function
(FF) or a parton distribution function (PDF) in that it is
a fundamentally non-perturbative object that absorbs in-
frared (IR) divergences in partonic calculations. Like FFs
and PDFs, the track function has a well-defined depen-
dence on the renormalization group (RG) scale µ through
a DGLAP-type evolution [9–13], though the specific evo-
lution is more reminiscent of the jet charge distribution
[14, 15]. For the observables we consider, each parton
has its own independent track function. Hadronization
correlations are captured by power corrections (beyond
the scope of this letter).

Consider the cross section for an IRC safe observable
e measured using partons

d�

de

=
X

N

Z
d⇧N

d�N

d⇧N
�[e � ê({p

µ
i })] , (2)

where we drop possible convolutions with PDFs to keep
the notation simple. Here, ⇧N denotes N -body phase
space, d�N/d⇧N is the corresponding partonic cross sec-
tion, and ê({pi}) implements the measurement on the
partonic four-momenta p

µ
i . Since e is an IRC safe ob-

servable, the KLN theorem [16, 17] guarantees a cancel-
lation of final state IR divergences between real and vir-
tual diagrams. The cross section for the same observable
measured using only tracks is

d�

de

=
X

N

Z
d⇧N

d�̄N

d⇧N

Z NY

i=1

dxi Ti(xi) �[ē � ê({xip
µ
i })],

(3)

ar
X

iv
:1

30
3.

66
37

v2
  [

he
p-

ph
]  

24
 S

ep
 2

01
3

charged hadrons

nonlinear 	

evolution	

equation

3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

2.0

3.0

4.0

x

TgHxL
Pythia 1000 GeV
Pythia 100 GeV
Pythia 10 GeV

100 Æ 1000 GeV

100 Æ 10 GeV

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

2.0

3.0

x

TdHxL
Pythia 1000 GeV
Pythia 100 GeV
Pythia 10 GeV

100 Æ 1000 GeV

100 Æ 10 GeV

FIG. 3: The evolution of the NLO gluon (top) and d-quark
(bottom) track functions compared to Pythia. Starting from
µ = 100 GeV (shown in Fig. 2), we evolve using Eq. (6) down
to µ = 10 GeV and up to µ = 1000 GeV. The bumps in the
Pythia distributions near x = 0, 1 at Q = 10 GeV correspond
to genuine non-perturbative e↵ects at ⇤QCD.

for the track function

µ

d

dµ

Ti(x, µ) =
1

2

X

j,k

Z
dz dx1 dx2

↵s(µ)

⇡

Pi!jk(z) (6)

⇥ Tj(x1, µ)Tk(x2, µ) �[x�zx1�(1�z)x2].

Like for a PDF, the track function can be extracted at
one scale and RG evolved to another scale, and the evo-
lution preserves the normalization in Eq. (1). Unlike a
PDF, Eq. (6) involves a convolution of two track func-
tions at NLO (and more convolutions at higher orders
corresponding to multiple branchings), so it is numeri-
cally more involved to perform the µ-evolution. At lead-
ing logarithmic (LL) order, the RG evolution in Eq. (6)
is equivalent to a parton shower, and Fig. 3 demonstrates
excellent agreement between our numerical evolution and
the parton shower in Pythia.

For a calculation at NLO, both the partonic cross sec-
tion and the track functions have IR divergences which
cancel in Eq. (3). To demonstrate this in a simple exam-
ple, consider the process e

+
e

� ! hadrons at a center-
of-mass energy Q where one measures the total energy
fraction w of charged particles. At NLO the partonic
process is e

+
e

� ! qq̄g, whose kinematics are described
by the energy fractions y1 and y2 of the quark and anti-
quark. Applying Eq. (3) we find

d�

dw

=

Z
dy1dy2

d�̄

dy1dy2

Z
dx1dx2dx3 Tq(x1)Tq(x2)Tg(x3)

⇥ �(w � [y1x1 + y2x2 + (2 � y1 � y2)x3]/2), (7)

since Tq = Tq̄. The matching coe�cient d�̄ is extracted
by evaluating this equation at the partonic level (see
Fig. 1). We then use it in Eq. (7) together with non-
perturbative hadronic track functions to obtain the phys-
ical cross section d�/dw. At the LO partonic level

d�

(0)

dy1dy2
= �

(0)
�(1 � y1)�(1 � y2), (8)

where �

(0) is the total Born cross section. At NLO, the
cross section can be expressed using plus-functions as

d�

(1)

dy1dy2
= �

(0) ↵s(µ)CF
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⇢⇣
⇡

2

2
� 4

⌘
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2
2)

2(1 � y1)+(1 � y2)+
(9)

+ �(1 � y1)
h

� 1

✏IR

Pq!qg(y2)

CF
+ (1 + y

2
2)

h ln(1 � y2)

1 � y2

i

+
+

Pq!qg(y2)

CF
ln

y2 Q

2

µ

2
+ 1 � y2

i
+ (y1 $ y2)

�
,

where CF = 4/3 and both real and virtual contributions
are included. The 1/✏IR-divergences in �

(1) are cancelled
by the ones in T

(1) from Eq. (5), and the finite remainder
defines �̄

(1) in MS. (For di↵erent IR regulators, the track
function may also contribute finite terms to the match-
ing.) By performing this kind of matching calculation,
one can determine �̄N for any process to any order in ↵s.
For the case of Eq. (9) which involves a single scale Q,
we choose µ ' Q to minimize the logarithms in �̄. In
Fig. 4 we show the LO and NLO distributions for the en-

ergy fraction w, using the track functions extracted from
Pythia by means of Eq. (11). There is good convergence
from LO to NLO and our fixed-order calculation agrees
well with Pythia.

Ultimately, we are interested in applying the track
function formalism to jet-based measurements at the
LHC, which typically involve multiple scales. For nar-
row well-separated jets, though, the contributions from
soft radiation are power-suppressed, so the energy frac-
tion x of the charged particles within a single jet depends
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FIG. 3: The evolution of the NLO gluon (top) and d-quark
(bottom) track functions compared to Pythia. Starting from
µ = 100 GeV (shown in Fig. 2), we evolve using Eq. (6) down
to µ = 10 GeV and up to µ = 1000 GeV. The bumps in the
Pythia distributions near x = 0, 1 at Q = 10 GeV correspond
to genuine non-perturbative e↵ects at ⇤QCD.
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⇥ Tj(x1, µ)Tk(x2, µ) �[x�zx1�(1�z)x2].

Like for a PDF, the track function can be extracted at
one scale and RG evolved to another scale, and the evo-
lution preserves the normalization in Eq. (1). Unlike a
PDF, Eq. (6) involves a convolution of two track func-
tions at NLO (and more convolutions at higher orders
corresponding to multiple branchings), so it is numeri-
cally more involved to perform the µ-evolution. At lead-
ing logarithmic (LL) order, the RG evolution in Eq. (6)
is equivalent to a parton shower, and Fig. 3 demonstrates
excellent agreement between our numerical evolution and
the parton shower in Pythia.

For a calculation at NLO, both the partonic cross sec-
tion and the track functions have IR divergences which
cancel in Eq. (3). To demonstrate this in a simple exam-
ple, consider the process e

+
e

� ! hadrons at a center-
of-mass energy Q where one measures the total energy
fraction w of charged particles. At NLO the partonic
process is e

+
e

� ! qq̄g, whose kinematics are described
by the energy fractions y1 and y2 of the quark and anti-
quark. Applying Eq. (3) we find

d�

dw

=
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dy1dy2

d�̄
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dx1dx2dx3 Tq(x1)Tq(x2)Tg(x3)

⇥ �(w � [y1x1 + y2x2 + (2 � y1 � y2)x3]/2), (7)

since Tq = Tq̄. The matching coe�cient d�̄ is extracted
by evaluating this equation at the partonic level (see
Fig. 1). We then use it in Eq. (7) together with non-
perturbative hadronic track functions to obtain the phys-
ical cross section d�/dw. At the LO partonic level

d�

(0)

dy1dy2
= �

(0)
�(1 � y1)�(1 � y2), (8)

where �

(0) is the total Born cross section. At NLO, the
cross section can be expressed using plus-functions as
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where CF = 4/3 and both real and virtual contributions
are included. The 1/✏IR-divergences in �

(1) are cancelled
by the ones in T

(1) from Eq. (5), and the finite remainder
defines �̄

(1) in MS. (For di↵erent IR regulators, the track
function may also contribute finite terms to the match-
ing.) By performing this kind of matching calculation,
one can determine �̄N for any process to any order in ↵s.
For the case of Eq. (9) which involves a single scale Q,
we choose µ ' Q to minimize the logarithms in �̄. In
Fig. 4 we show the LO and NLO distributions for the en-

ergy fraction w, using the track functions extracted from
Pythia by means of Eq. (11). There is good convergence
from LO to NLO and our fixed-order calculation agrees
well with Pythia.

Ultimately, we are interested in applying the track
function formalism to jet-based measurements at the
LHC, which typically involve multiple scales. For nar-
row well-separated jets, though, the contributions from
soft radiation are power-suppressed, so the energy frac-
tion x of the charged particles within a single jet depends
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Likely to have useful applications !
to heavy ion physics and phases of !
QCD matter.!

In high energy nuclear collisions SCETG (with !
medium interactions) is being developed to !
allow for systematic improvements in the !
precision of in-medium jet calculations. This !
builds on the strong base of work done!
with “cold jets”. !
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•

•
Cross Fertilization with Jets in Medium

Many of the systematics for “Cold” Jets also play a role for Jets in Medium!

key observables?  key distributions?  

calculable vs. measurable vs. useful?

factorization?

eg. “Cold and Hot” jet shapes 
Chien, Vitev

Idilbi, Majumder;  D’Eramo, Liu, Rajagopal;
Ovanesyan, Vitev; …
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TMDPDF Evolution
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FIG. 2: Theory fit to the experimental data on Sivers single spin asymmetries in SIDIS , as
functions of xB : left panel from COMPASS [8] and right from HERMES [4]. Q2 evolution has

been taken into account from Eq. (3).

at low energy scale Q2
0 = 2.4GeV 2,

F̃ α
sivers(Q0, b) =

ibα⊥M

2

∑

q

e2q ∆f sivers
q (x) Dq(z)e

−(g0−gs)b2−ghb
2/z2h , (5)

where M = 0.94GeV is a normalization scale, and we have chosen an additional parameter
gs for transverse momentum dependence and the fragmentation part remains the same. The

function ∆fq(x) = Nqxαq(1 − x)βq (αq+βq)αq+βq

α
αq
q β

βq
q

fq(x) parameterize the x-dependence of the

quark Sivers function similar to that in Ref. [22]. We have the following free parameters:
gs, αq, βq and Nq for valence up, down, and sea quarks. Since the data are not sufficient to
differentiate gs for different flavors, we choose the same gs. We further assume the same β
parameter for all quark flavors, and the same α parameter for all the sea quarks.

TABLE I: Parameters {a0i } describing our optimum ∆fi in Eq. (5) at the input scale Q2 = 2.4GeV.

flavor i Ni αi βi gs (GeV2)

u 0.13±0.023 0.81±0.16 4.0±1.2 0.062±0.005

d -0.27±0.12 1.41±0.28 4.0±1.2 0.062±0.005
s 0.07±0.06 0.58±0.39 4.0±1.2 0.062±0.005
ū -0.07±0.05 0.58±0.39 4.0±1.2 0.062±0.005

d̄ -0.19±0.12 0.58±0.39 4.0±1.2 0.062±0.005

With the above parameterization and the energy evolution effects taken by Eqs. (2,3) for
both spin-average and single-spin-dependent cross sections, we perform a combined fit to
the Sivers asymmetries from HERMES and COMPASS experiments which scans Q2 ∼2.4-
10GeV2. We have total of 255 data points, with a minimum χ2 fit. The best fit results into
χ2/d.o.f = 1.08 and the parameters listed in Table I. As an example, we show in Fig. 2 the
comparisons between the theory calculations and the experimental data as functions of xB

for COMPASS and HERMES experiments, which demonstrate a consistent description of
both data.
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FIG. 1: Comparison between HERMES [27] and preliminary COMPASS data [28] for the (a.) z and (b.) Ph⊥ dependence of
Eq. (3) with a proton target and π+ and h+ as final state hadrons respectively. The solid line is the fit from Ref. [22]. The
dashed curve is the result of evolving to the COMPASS scale using the full TMD-evolution of Ref. [16].

Analysis and Discussion: As input distributions,
we use the already existing Gaussian parametrizations of
the Torino group [22], relevant for low ⟨Q2⟩Hermes ≃ 2.4
GeV2 and typical for the HERMES experiment. These
earlier fixed scale fits were done at leading order in QCD
and neglecting the QCD evolution of the TMDs, which
was not available at that time. We note that the anal-
ysis of Ref. [22] also uses deuteron data [32] from the
COMPASS experiment, which corresponds to higher val-
ues of Q2. However, the COMPASS asymmetry [32] on
the deuteron target is very small due to strong cancel-
lations between the up and down quark Sivers functions
and thus is not heavily affected by the evolution. We
have verified that the results of the Torino fits are negli-
gibly altered if the deuterium data are excluded and only
HERMES data [27] are used in the fit, and the main re-
sult of our present analysis is not affected.

Our calculations will follow the steps of Ref. [16]. For
gK , we use the functional form gK = 1

2g2b
2
T with g2 =

0.68 GeV2 [33], which was obtained by fits performed
using Drell-Yan data. In Eq. (4), this corresponds to
using C1 = 1.123 and bmax = 0.5 GeV−1. All anomalous
dimensions and K̃ are calculated to lowest non-vanishing
order as in Refs. [14, 15].

In Fig. 1(a,b), we show the evolution using the full
TMD-factorization approach as expressed in Eq. (4),
where the evolution is due to the terms in the expo-
nential. The evolution is applied to the most recent
Torino fits [22] as a function z and Ph⊥ , and use
hard scales corresponding to both HERMES data [27]
and recent preliminary COMPASS data [28]. The re-
sult of the evolution is compared with the data. The
x-dependent asymmetry is not ideal for the comparison
because there are strong correlations between x and Q2.
(Recall Q2 ≃ xys.) However, z or Ph⊥ dependent asym-
metries are measured at almost the same hard scales,

namely ⟨Q2⟩Hermes ≃ 2.4 GeV2 and ⟨Q2⟩COMPASS ≃ 3.8
GeV2, so we focus on the Sivers asymmetry as a func-
tion of these variables. (For the preliminary h+ COM-
PASS data that we use, ⟨Q2⟩ varies between 3.63 GeV2

and 3.88 GeV2, in the range of z from 0.2 to 0.7. The
corresponding variation in our calculation is negligible
relative to the variation between the HERMES and pre-
liminary COMPASS data sets.) We observe that includ-
ing QCD evolution leads to excellent consistency between
the HERMES [27] and preliminary COMPASS data [28],
without the need for further fitting. The two data sets
correspond to different ranges in x, and this could be
partly responsible for the variation. A similarly fast evo-
lution has not been seen so far in the Collins Single Spin
Asymmetry [28, 34], suggesting a more complicated in-
terplay between bT , x and z dependence. We leave a
careful consideration of these issues to future studies.
Nevertheless, we find the early success of the compari-
son in Fig. (1) encouraging, especially as leading order
fits [19, 21, 22] fail to reproduce COMPASS proton data
[28] sufficiently well. Still, we caution that future fits will
need to account for the x-dependence as well.

A critical point is that the information about the non-
perturbative evolution contained in gK is taken from the
measurement of a totally different observable, at much
higher energy scales [33] (unpolarized Drell-Yan scatter-
ing up to Tevatron energies). In Fig. 1(b) we show a
similar plot but for the Ph⊥ dependence. That the same
gK successfully describes TSSA at HERMES and COM-
PASS is compelling evidence for the universality of gK
predicted by the TMD-factorization theorem.

In Fig. 2, we show the evolution of the full asymmetry
to higher values of Q2. Note that, although Refs. [15, 16]
report a strong suppression of the unpolarized TMDs and
the Sivers function itself with increasing Q2, the TSSA is
not as heavily suppressed. Therefore, it may be expected
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FIG. 2: Sivers evolution in Q2, integrated over x, z and Ph⊥.

that the Sivers SSA remains significant at the higher Q
values of experiments planned at the Relativistic Heavy
Ion Collider (RHIC) and the EIC. Still, the QCD evolu-
tion effects are clearly non-negligible and should be cor-
rectly included in future extractions. Ref. [9] predicts a
roughly ∼ 1/

√
Q suppression for the peak of the Sivers

asymmetry as a function of transverse momentum, for
large Q2 >∼ 10 GeV2. We find that, for the full asymme-
try integrated over all transverse momentum, a power-
like scaling law does not provide a good description in
the range of Q in Fig. 2. Generally, we find that the evo-
lution leads to suppression that is faster than ∼ 1/

√
Q,

but slower than ∼ 1/Q2. We caution, however, that a
completely correct treatment at large Q must include the
Y -term in Eq. (2), and it is possible that this will weaken
the rate of the suppression.

To conclude, we remark that it is important for future
theoretical calculations to not only explain experimen-
tal results, but also to make precise pQCD-based pre-
dictions that can be tested against future data at larger
Q. With this in mind, we view the success of the TMD-
factorization treatment in explaining the HERMES and
COMPASS as highly encouraging.
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FIG. 3: Predictions for the Sivers single spin asymmetries of Drell-Yan lepton pair production at
RHIC,

√
S = 200GeV, as functions of rapidity for two different mass ranges. As a comparison, we

also show the prediction without the evolution effects for Q = 4GeV case as dotted line.
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FIG. 4: The Collins asymmetries in di-hadron azimuthal angular distributions in e+e− annihila-
tion processes: fit to the BELLE experiment at

√
S = 10.6GeV Ref. [9], and predictions for the

experiment at BEPC at
√
S = 4.6GeV.

Having constrained quark Sivers functions from HERMES/COMPASS experiments, we
will be able to make predictions for the SSAs in the Drell-Yan processes with the evolution
effects. In Fig. 3, we show that for RHIC experiment at

√
S = 200GeV, as function of rapid-

ity with P⊥ integrated up to 2GeV. We have flipped the sign for the quark Sivers function
because of the nontrivial universality property for the Sivers function. For comparison, we
have also plotted the prediction without the evolution effects by setting SSud = 0 in Eq. (3).
From this, we see that the evolution reduces the asymmetry by about a factor of 2. This is
different from that in Ref [19], where an order of magnitude reduction was indicated for the
typical Drell-Yan experiments.

We have done a number of cross checks for the above evolution effects. First, we can tune
the parameter in the calculations of Ref. [19] to reproduce the P⊥ spectrum of the Drell-Yan
data, which leads to a much smaller g2 = 0.09. With that change, we can describe both

6

smaller Q2 dependence
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FIG. 1. Resummed D at Qi =
√
2.4 GeV with nf = 4 (a) and Qi = 5 GeV with nf = 5 (b).

we have

bX = A(µi) bΛQCD
, A(µi) = exp(−tµi +G(tµi)) , bΛQCD

=
2e−γE

ΛQCD
, (19)

from which it is clear that bX is closely related to bΛQCD
, up to the µi-dependent proportionality factor A(µi). Given

Eq. (18), at LL accuracy G(t) = t, and thus A(µi) = 1 and bX = bΛQCD
at that accuracy. When one goes beyond LL

accuracy for G(t) and considers the available information on the β-function as illustrated in Eq. (18), numerically one
finds that 1 ≤ A(µi) ≤ 2 for 1 GeV≤ µi ≤ 1 TeV. We conclude that the divergence of DR at X = 1 is a manifestation
of the Landau pole, as claimed before.
One can calculate the numerical value of ΛQCD, which for nf = 5 and αs(MZ) = 0.117 is ΛQCD ≈ 157 MeV, and

correspondingly bΛQCD
≈ 7 GeV−1. At this point we are clearly within the non-perturbative region, which cannot be

accessed by perturbative calculations and has to be modeled and extracted from experimental data.
In Section IV and in Appendix B we show how to derive an expression for DR up to any desired perturbative order.

Using Eqs. (16) and (B4) we get the asymptotic expression of DR when X ∼ 1 at NNNLL,

DR|X→1− = −
Γ0

2β0
ln(1 −X)

[

1 +

(

a

1−X

)

β1
β0

+

(

a

1−X

)2 β1
β0

(

Γ1

Γ0
−
β1
β0

ln(1−X)

)

+

(

a

1−X

)3 β1
β0

(

β2
1

3β2
0

ln2(1−X)−
(

Γ1β1
Γ0β0

+
β2
1

2β2
0

)

ln(1−X) +
Γ2

Γ0
+
β2
β0

−
β2
1

β2
0

)

+ ...

]

, (20)

from which one can obtain (approximately) the values of b where convergence is lost. This can also be inferred from
Fig. 1. Thus we can trust DR up to bc ∼ 4 GeV−1 for µi =

√
2.4 GeV and bc ∼ 6 GeV−1 for µi = 5 GeV. Notice

that we have used different numbers of active flavors depending on the scale µi, nf = 4 for µi =
√
2.4 GeV and

nf = 5 for µi = 5 GeV, since we have set the threshold of the bottom mass to mb = 4.2 GeV. It is clear then that
the larger the initial scale µi is the broader the interval of the impact parameter where the convergence of DR is
acceptable, and where bΛQCD

is the maximum achievable value. The two cases shown in Fig. 1 represent two extreme
phenomenological cases, between which one should choose the initial scale in order to fix the low energy models for
TMDs.
A last comment worth mentioning concerns the convergence of DR in the small b region. As discussed above, the

convergence of the resummed D is only spoiled in the region around the Landau pole, i.e., for b close to bΛQCD
. In

the small b region DR is completely resummable (see Fig. 1) and this agrees with other studies on the perturbative
series in this region [29].
Summarizing, the resummation method explained above allows us to implement the evolution kernel just in a finite

range of the impact parameter while for larger values of b one clearly needs a non-perturbative contribution. The
discussion of such contribution is beyond the scope of the current work. Then, we can write

R̃(b;Qi, µi, Qf , µf ) = exp

{

∫ µf

µi

dµ̄

µ̄
γF

(

αs(µ̄), ln
Q2

f

µ̄2

)}(

Q2
f

Q2
i

)−[DR(b;µi)θ(bc−b)+DNP (b;µi)θ(b−bc)]

, (21)
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FIG. 10: (color online). The Q dependent terms in the perturbative parts of the exponents in (a) Eq. (37) for the TMD
factorization formalism and (b) Eq. (42) for the Sun-Yuan formalism.
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FIG. 11: (color online). The Q dependent terms in the Collins TMD factorization formalism exponents from Eq. (37) using
the large-bT function gK(bT ; bmax

) in the form of Eq. (40) with g

2

= 0.1 GeV2, b
NP

= 2.0 GeV�1 and with b

max

= 0.5GeV�1.

to be an advantage in that there is no explicit Landau pole encountered in the evaluation of ↵s(µ) and thus, on the
surface, no need to include a nonperturbative component to the evolution. (See the discussion immediately before
and after Eq. (3) in Ref. [53] for the rationale and motivation given to use this form rather than the Collins TMD
factorization or CSS form.) By contrast, in the Collins TMD-factorization approach, the region of smaller Q is
where the genuine nonperturbative bT -dependence is understood to become increasingly important, including in the
evolution. The Collins TMD-factorization formalism includes a strategy of isolating and testing the strong universality
of nonperturbative behavior at large bT while matching to an optimal perturbative treatment at bT ⌧ 1/⇤

QCD

. Both
the standard CSS formalism and the Collins TMD factorization formalism predict a greater input from nonperturbative
evolution over low regions of Q. Conversely, Sun-Yuan argue that the nonperturbative component is needed for
evolution at large Q but is negligible in the vicinity of small Q.

While it is beyond the scope of this article to make a full comparison between these two approaches (see, however,
Ref. [82]), it is worthwhile to examine briefly whether the two formalisms are essentially equivalent ways of implement-
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are much larger then the typical QCD scale s ⇠ �t ⇠ �u � ⇤2, where ⇤ ⇠ 0.5 GeV is a

soft hadronic scale. In full analogy with the nucleon FFs, the leading power behavior of the

H H

H

= +
H

H

F1 g1

�
sq1 q2

H

H H

= + +
F1

�
s

g1,3

Figure 1. The factorization of the TPE contribution in elastic ep scattering. The crossed box
diagram on the lhs is not shown for simplicity. The possible attachments of the soft photon �

s

to
the lepton lines on the rhs are shown by crosses.

TPE amplitudes can be described by two di↵erent configurations associated with the soft

and hard spectator contributions. Schematically, the structure of the leading contributions

is shown in Fig.1. The first two graphs on the rhs describe the soft spectator contribution

and the third one corresponds to the hard spectator configuration. The hard subprocesses,

which include one or two hard photons are shown as blobs with the symbol H. The hard

spectator configuration has already been studied in Ref.[32, 33]. The analysis of the soft

spectator terms is new. The soft QCD dynamics for the corresponding diagram is described

by a SCET FF denoted by F1 and amplitudes g1,3 which are defined in SCET-I. At leading

order in the QCD coupling, we obtain these new SCET amplitudes which do not appear

in the factorization formulas for the nucleon FFs. It turns out that F1 can be fixed from

the wide-angle Compton scattering using the universality of its definition in SCET-I. The

amplitudes g1,3 involve matrix element which cannot be related to known objects, and at

present can only be estimated within some model approach. As a first step we consider an

estimate using the e↵ective theory with hadronic degrees of freedom. In this way the TPE

contribution is completely defined. We then perform phenomenological studies of the TPE

e↵ects and compare our results with existing experimental data.

Our paper is organized as follows. Section 2 is devoted to the general properties of

elastic ep scattering. We specify notations and kinematics, discuss the general properties

of the amplitudes, as well as the structure of the reduced cross section and asymmetries.

In section 3 we derive the leading order SCET-I factorization formula for the soft spectator

scattering contribution in the TPE amplitudes. In the next section we perform the match-

ing and compute the one-loop, leading order in ↵
s

hard coe�cient functions. Section 5

is devoted to the extraction of the second unknown FF F1 from the data for wide-angle

Compton scattering. In section 6 we discuss the the SCET amplitudes g1,3 which describe

the TPE contribution when one of the photons is soft. We use a simple hadronic model in

order to estimate this contribution.

In section 7 we use the obtained result for the phenomenological analysis and estimate

the e↵ect of the TPE contribution for di↵erent observables. The summary of our obtained

results is presented in section 8. In Appendices A-E we present more details of some

calculations.
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at leading order. Because both photons in this case are hard one needs only one-gluon

exchange as shown in Fig.2. The nonperturbative input is described by the nucleon dis-

tribution amplitudes (DAs), see the details in Refs.[32, 33] . This calculation allows us to

= +  ...H H

Figure 2. Reduced diagram describing the hard spectator scattering contribution and the leading
order diagram with one gluon exchange.

estimate the asymptotic behavior of TPE amplitudes at large Q2

�G
M

⇠ ⌫

m2
�F3 ⇠ ⇤4

Q4
, �F2 ⇠ ⇤6

Q6
. (2.24)

The behavior of the amplitudes �G
M

and �F3 is similar to the Dirac FF F1 ⇠ ⇤4/Q4

and can also be described within the collinear factorization approach. The helicity flip

amplitudes �F2 is suppressed by a power Q�2 similar to the corresponding Pauli FF F2

and can not be described by collinear factorization due to end-point divergencies. Therefore

qualitatively, upon neglecting the logarithmic structure, the situation is quite similar to

the nucleon FFs.

On the other hand the analysis of the soft spectator scattering for the nucleon FFs

shows that these terms are not suppressed by inverse powers of Q [35, 36] and therefore

can also provide sizable contributions especially in the region of intermediate Q where

Q⇤ ⇠ m2. In Refs.[31, 37] we investigated the soft spectator contribution and suggested

the generalization of the factorization which includes both hard and soft spectator terms.

Taking into account that the TPE dynamics is quite similar to the FF case one may expect

that the same situation is relevant for this case too. Then the soft spectator scattering

must also be included into the consideration when calculating the TPE amplitudes.

Such an attempt has been developed in [38, 39] where the diagrams in Fig.2 have been

evaluated within the framework of the so-called handbag approach [55]. In this model

q1 q2

Figure 3. Diagrams describing the soft spectator scattering. Both photons interact with the same
quark.

the overlap of the hadronic states are described by the generalized parton distribution

(GPD) introduced as matrix element of the light-cone twist-2 matrix element. The GPD

which arises here at large Q is considered as a natural generalization of the matrix element

which appears in the description of the deeply virtual Compton scattering (DVCS) at

small momentum transfer Q ⇠ ⇤. However in DVCS kinematics, GPDs describe the

– 7 –

2 Elastic lepton-nucleon scattering at large Q2

We start by briefly reviewing the main definitions and some results for the process e(k) +

p(p) ! e(k0)+p(p0). In order to describe the electron-nucleon elastic scattering process we

introduce the following notations

P =
1

2
(p + p0), K =

1

2
(k + k0), q = p0 � p = k � k0, (2.1)

and define the Mandelstam variables

s = (p + k)2, t = q2 = �Q2, u = (p � k0)2, ⌧ =
Q2

4m2
, (2.2)

where m is the nucleon mass. For further use, we introduce two more convenient variables

" =

✓

1 + 2(1 + ⌧) tan2
✓

2

◆�1

=
(s � u)2 + t(4m2 � t)

(s � u)2 � t(4m2 � t)
, 0 < " < 1, (2.3)

⌫ = (K · P ) =
s � u

4
, (2.4)

where ✓ is the electron Lab scattering angle. One can choose any two independent variables

for the description of the physical amplitudes of the process. It is customary to use the

variables Q2 and " for a description of the cross sections and related observables.

Then the general parametrization of the ep�scattering amplitude reads [34]

⌦

p0, k0 out
�

� in k, pi = i(2⇡)4�(p + k � p � k) A
ep

, (2.5)

where

A
ep

=
e2

Q2
ū(k0)�µu(k) N̄(p0)



�µG̃
M

(", Q2) � Pµ

m
F̃2(", Q

2) +
Pµ

m2
/K F̃3(", Q

2)

�

N(p).

(2.6)

In the one-photon exchange approximation, this amplitude is given by the well known

formula

A�

ep

=
e2

Q2
ū(k0)�µu(k) N̄(p0)



�µG
M

(Q2) � Pµ

m
F2(Q

2)

�

N(p). (2.7)

The following di↵erence can be considered as definition of the TPE corrections arising from

the QED next-to-leading corrections

A
ep

� A�

ep

⌘ A��

ep

=
e2

Q2
ū(k0)�µu(k) (2.8)

N̄(p0)



�µ�G̃
M

(", Q2) � Pµ

m
�F̃2(", Q

2) +
Pµ

m2
/K F̃3(", Q

2)

�

N(p), (2.9)

with

�G̃
M

(", Q2) = G̃
M

(", Q2) � G
M

(Q2), �F̃2(", Q
2) = F̃2(", Q

2) � F2(Q
2). (2.10)

The amplitudes �G̃
M

, �F̃2 and F̃3 obtain di↵erent contributions from all diagrams asso-

ciated with the QED radiative corrections to elastic ep-scattering. In the present paper
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for the description of the physical amplitudes of the process. It is customary to use the
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formula

A�

ep

=
e2

Q2
ū(k0)�µu(k) N̄(p0)



�µG
M

(Q2) � Pµ

m
F2(Q

2)

�

N(p). (2.7)

The following di↵erence can be considered as definition of the TPE corrections arising from
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The amplitudes �G̃
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, �F̃2 and F̃3 obtain di↵erent contributions from all diagrams asso-

ciated with the QED radiative corrections to elastic ep-scattering. In the present paper
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Notice that the soft scale �2 cancel in the final expression for C
M

as it should be. In

Eq.(4.9) we write ln[s/µ2
F

] with the total energy s for convenience.

Therefore our final result for the soft spectator contribution to the TPE amplitude can

be written as
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(4.11)

Let us now discuss the complete factorization formula describing the TPE contribution.

We suggest that the TPE amplitudes in Eq.(2.8) in the region of wide-angle scattering

(2.23) can be described by the following tentative factorization formula

�G̃2�
M

(", Q2) = �G̃(s)
M

(", Q2) + �G̃(h)
M

(", Q2), (4.12)

F̃3(", Q
2) = F̃ (s)

3 (", Q2) + F̃ (h)
3 (", Q2), (4.13)

�F̃ 2�
2 (", Q2) = �F̃ (s)

2 (", Q2) + �F̃ (h)
2 (", Q2), (4.14)

where the indices (s) and (h) denote the contributions related to the soft and hard spectator

scattering, respectively.

The hard spectator contributions describe the scattering where the all spectator quarks

are involved into the hard subprocess. Schematically these contributions are shown by the

third diagram on rhs in Fig.1. Schematically one can write

F (h)
3 =  (x

i

) ⇤ H3(z, Q2; x
i

, y
i

) ⇤ (y
i

), (4.15)

�G̃(h)
M

=  (x
i

) ⇤ H
M

(z, Q2; x
i

, y
i

) ⇤ (y
i

), (4.16)

where symbols H3,M denote the hard coe�cient functions and the asterisk is used as no-

tation for the convolution integrals over the collinear fractions x
i

, y
i

. The leading order

coe�cient functions H3,M were computed in Refs. [32, 33]. The hard spectator contri-

butions are dominated by one hard gluon exchange, see Fig.2, and are of order ↵
s

. The

nucleon distribution amplitude (x
i

) describes the nonperturbative overlap of the collinear

quarks with the nucleon state. The hard spectator contribution to the helicity flip ampli-

tude F (h)
2 can be written in a similar way but it is power suppressed. Furthermore, its the

convolution integrals are ill defined due to the end-point singularities. Therefore we will

not consider the helicity flip amplitude in the present publication.
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The soft spectator contributions describe the scattering where the spectator quarks

are soft. These TPE contributions have been discussed above. Comparing Eq. (2.8) with

Eq. (4.11) (the matching is quite similar to one described in Appendix A) we obtain

�G̃(s)
M

(", Q2) =
↵

⇡

�

g1(z, Q, µ
F

) + C
M

(z, Q2, µ
F

)F1(Q)
 

, (4.17)
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m2
F̃ (s)
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⌫

s

�

g3(z, Q) + C3(z, Q2)F1(Q)
 

, (4.18)

where we assume z ⌘ z(") and ⌫ defined in Eq. (2.4).

The soft contribution to the helicity flip amplitude is also suppressed by the power of

the large scale 1/Q2 and can be written as (for simplicity we do not write the arguments

on the rhs)

�F̃ (s)
2 (", Q2) =

h

�F̃ (s)
2

i

subl
+

↵

⇡

4m2

Q2

h

g1 + C
M

F1 +
⌫

s
{C3F1 + g3}

i

. (4.19)

In this expression we computed only the kinematical corrections similar to the Pauli FF

F2 in Eq.(3.15). The complete answer includes also contribution with the matrix elements

of the subleading SCET operators
h

�F̃ (s)
2

i

subl
which we do not consider for simplicity.

As we can see from Eqs.(4.17,4.18) the two leading power amplitudes are described

by the three nonperturbative functions: the SCET FF F1(Q) and the SCET amplitudes

g1,3(z, Q). If both photons are hard then the soft spectator scattering is described by the

pure QCD sector. In this case the hard-collinear dynamics involves only the one hard scale

Q and is described by the SCET FF F1(Q). Therefore the "-dependence is described by the

hard coe�cient functions C3,M and can be computed in perturbative QCD. The situation

is di↵erent when the one photon is soft. Such soft photon interacts with the hard-collinear

and soft constituents and therefore the soft-overlap contribution is more complicated and

is described by the SCET amplitudes g1,3(z, Q2). We recall that we assume that the hard-

collinear scale is not large and we can not use it for perturbative calculations. In this

case the "(z)-dependence originates from the soft dynamics and can not be computed from

pQCD.

Another di�culty is related to the separation of the amplitudes for the soft and hard

spectator contributions. The simple sums as in Eqs.(4.12-4.14) are motivated by the struc-

ture of the SCET-I operators. However the overlap of the soft and collinear sectors in

SCET-II makes such separation ambiguous. As a rule this leads to the end-point singulari-

ties in the collinear integrals defining the hard spectator terms. In Ref.[37] it was discussed

that such situation even occurs for the FF F1 where one could expect that the hard spec-

tator contribution is well defined. In general, the separation between the soft and hard

spectators contributions can be well formulated only within a certain regularization scheme

which allows to treat the soft and collinear sectors separately and consistently. From this

point of view our results are still not complete because we did not provide such a separation

scheme. This question will be discussed in the next two sections.

Finally let us note that the QED dynamics considered here is closely connected with the

underlying QCD dynamics. In particular the energy and virtuality of the soft photons can
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2 Elastic lepton-nucleon scattering at large Q2

We start by briefly reviewing the main definitions and some results for the process e(k) +

p(p) ! e(k0)+p(p0). In order to describe the electron-nucleon elastic scattering process we

introduce the following notations

P =
1

2
(p + p0), K =

1

2
(k + k0), q = p0 � p = k � k0, (2.1)

and define the Mandelstam variables

s = (p + k)2, t = q2 = �Q2, u = (p � k0)2, ⌧ =
Q2

4m2
, (2.2)

where m is the nucleon mass. For further use, we introduce two more convenient variables

" =

✓

1 + 2(1 + ⌧) tan2
✓

2

◆�1

=
(s � u)2 + t(4m2 � t)

(s � u)2 � t(4m2 � t)
, 0 < " < 1, (2.3)

⌫ = (K · P ) =
s � u

4
, (2.4)

where ✓ is the electron Lab scattering angle. One can choose any two independent variables

for the description of the physical amplitudes of the process. It is customary to use the

variables Q2 and " for a description of the cross sections and related observables.

Then the general parametrization of the ep�scattering amplitude reads [34]

⌦

p0, k0 out
�

� in k, pi = i(2⇡)4�(p + k � p � k) A
ep

, (2.5)

where

A
ep

=
e2

Q2
ū(k0)�µu(k) N̄(p0)



�µG̃
M

(", Q2) � Pµ

m
F̃2(", Q

2) +
Pµ

m2
/K F̃3(", Q

2)

�

N(p).

(2.6)

In the one-photon exchange approximation, this amplitude is given by the well known

formula

A�

ep

=
e2

Q2
ū(k0)�µu(k) N̄(p0)



�µG
M

(Q2) � Pµ

m
F2(Q

2)

�

N(p). (2.7)

The following di↵erence can be considered as definition of the TPE corrections arising from

the QED next-to-leading corrections

A
ep

� A�

ep

⌘ A��

ep
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e2

Q2
ū(k0)�µu(k) (2.8)

N̄(p0)
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(", Q2) � Pµ

m
�F̃2(", Q

2) +
Pµ

m2
/K F̃3(", Q
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N(p), (2.9)

with

�G̃
M

(", Q2) = G̃
M

(", Q2) � G
M

(Q2), �F̃2(", Q
2) = F̃2(", Q

2) � F2(Q
2). (2.10)

The amplitudes �G̃
M

, �F̃2 and F̃3 obtain di↵erent contributions from all diagrams asso-

ciated with the QED radiative corrections to elastic ep-scattering. In the present paper
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ciated with the QED radiative corrections to elastic ep-scattering. In the present paper
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extracted by factorizing wide angle 	

Compton scattering and using data

use models

the light-cone expansion of the external momenta read

q = Q
n

2
� Q

n̄

2
, p ' Q

n̄

2
, p0 ' Q

n

2
, (3.1)

k ' z̄

z
Q

n̄

2
+

1

z
Q

n

2
+ k?, k0 ' 1

z
Q

n̄

2
+

z̄

z
Q

n

2
+ k?, (3.2)

where we introduced for convenience the dimensionless parameter z = �t/s, with z̄ ⌘ 1�z.

The Breit system is convenient for the description of the large Q2 behavior of the nucleon

FFs and it is natural to use it for the consideration of the TPE contributions too.

Let us briefly describe the SCET notations used in our paper. We will use the SCET

formulation in coordinate space developed in [44]. For the SCET fields we use the following

notations. The fields ⇠
n

, A(n)
µ

and ⇠
n̄

, A(n̄)
µ

denote hard-collinear quark and gluon fields

associated with momentum p0 and p, respectively, see Eq.(3.1). As usually, the hard-

collinear quark fields satisfy

/n⇠
n

= 0, /̄n⇠
n̄

= 0. (3.3)

The fields q and A(s)
µ

denote the soft quarks and gluons which also enter in the SCET

Lagrangian. These fields describe particles with soft momenta k
µ

⇠ ⇤.1 We also use the

convenient notation for the gauge invariant combinations often appearing in SCET such as

�
n

(�n̄) ⌘ W
n

(�n̄)⇠
n

(�n̄), (3.4)

where the hard-collinear gluon Wilson line (WL) reads :

W
n

(z) = P exp

⇢

ig

Z 0

�1
ds n̄ · A(n)(z + sn̄)

�

. (3.5)

In the QED sector we also split the fields according to the same SCET prescription.

Let us notice that the pure QED radiative corrections (electron vertex and self-energy)

can be computed exactly and for such calculations such representations are not required.

However in case of the TPE corrections, the hard and soft photons correspond with di↵erent

dynamics, making the SCET representation useful.

In the wide-angle kinematics we have four directions with a large energy flow. It

is therefore useful to introduce two more auxiliary light-cone vectors associated with the

lepton momenta: k and k0

v̄µ =
2kµ

Q
, vµ =

2k0µ

Q
, (v̄ · v) = 2. (3.6)

Then, an arbitrary vector can be decomposed as

V µ = (V · v̄)
vµ

2
+ (V · v)

v̄µ

2
+ V

T

, (3.7)

1In Ref.[44] these modes are introduced as ultra-soft. In this work we use the di↵erent terminology

suggested in Refs.[46, 47] .
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(here      dependence is calculable)�

contains the unknown amplitude �F̃2. This amplitude depends on the matrix elements of

subleading SCET operators which we did not consider in our analysis. We will assume

that the corresponding di↵erence �G̃2�
E

+ ⌫

m

2 F̃3 � G
E

1
2�

MT
2� in Eq.(7.21) behaves similar to

the FF G
E

= G
M

� (1 + ⌧)F2 = RG
M

and therefore

�G̃2�
E

+
⌫

m2
F̃3 � G

E

1

2
�MT
2� ⇠ ↵

⇡
O(R). (7.23)

In this case the correction originating from such term in Eq.(7.21) is relatively small

2
"

⌧
G

E

Re
h

�G̃2�
E

+
⌫

m2
F̃3 � G

E

�MT
2�

i

⇠ 2
"

⌧
G2

M

↵

⇡
⇥ O(R2), (7.24)

because the ratio R is small and we can neglect it. Therefore in our numerical analysis we

use for the reduced cross section the following expression

�1�,MT
R

= G2
M

+
"

⌧
G2

E

+ 2G
M

Re



�G̃2�
M

+ "
⌫

m2
F̃3 � G

M

1

2
�MT
2�

�

. (7.25)

The values �1�,MT
R

must be considered as experimental data. Taking into account that

the ratio R = G
E

/G
M

is also measured, see Eq.(7.7), one finds that only the FF G
M

is an unknown quantity on the rhs of the Eq.(7.25). Therefore using Eq.(7.25) we can

extract the value G
M

using the data from the kinematical region where our approximation

is valid: s ⇠ �t ⇠ �u � ⇤. We use the data from Refs. [7, 9]. In Figs.13,14 we show the

fit of the experimental data for di↵erent values of Q. The shaded area shows a transition

region where the Mandelstam variable u is already quite small and one may expect sizable

contributions originating from the higher order and, probably, power corrections. The
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Figure 13. The fit of data for the ep ! ep elastic scattering reduced cross section from [7] for
di↵erent values of Q2. For the fit we used only the data points which are lying on the right of the
shaded area.
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Factorization Violation
• Examples of factorization violation are known for TMD factorization 	


in hadro-production of nearly back-to-back hadrons

November 19, 2013 15:33 WSPC/INSTRUCTION FILE 1460007

T. C. Rogers

Fig. 2. Spectator model diagrams with target spectator interactions for SIDIS and Drell-Yan
scattering.

in Fig. 2 for SIDIS and Drell-Yan scattering. The gluon labeled l is in the Glauber
region when

|l+l−| ≪ l2t ∼ ΛQCD . (1)

The steps for factorizing into separate PDFs can proceed, therefore, only if there is
a set of contour deformations that avoid the Glauber region. The target propagators
trap the l− component of the spectator attachment at l− ∼ Λ2/Q. As a result, the
only way to avoid the Glauber region is to deform the l+ contour. The positions of
initial and final state poles in the upper part of the graph determine whether the
l+ deformations need to be upward or downward in the complex plane according to
whether the process is SIDIS or Drell-Yan.

Complications with the Glauber region also arise from spectator-spectator inter-
actions, but these cancel in the inclusive sum over final states in the upper and lower
bubbles in the steps of a factorization derivation (see, e.g., Ref. [3]). Thus, extra care
is needed when conditions are placed on hadronic final state momenta, as discussed
in the next section.

3. TMD Factorization Breaking

The sign reversal of the Sivers function hints at the problems that arise with TMD
factorization in more complicated processes such as the hadro-production of nearly
back-to-back hadrons:

H1 + H2 → H3 + H4 + X . (2)

Typical spectator model diagrams are shown in Fig. 3. The issues encountered here
with the Glauber region are similar to those encountered in the SIDIS and Drell-
Yan cases discussed in the previous section, but now there is a complicated tangle
of initial and final state interactions that force the spectator interactions in Fig. 3
to be deformed alternately upward and downward depending on how they attach to
the upper part of the graph. At a minimum, a more general Wilson line operator,
involving structures like loops, is needed in the lower hadron’s TMD PDF. This
was first noted in Ref. [6], and was later recognized in Ref. [7] as a complication
with Glauber deformations and a breakdown of the normal steps of a factorization
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•

issues:  uniqueness of Wilson line operators (not just a sign flip),	

           Glauber non-cancellations (required to factor hadrons)

Can we generally characterize theoretically what processes violate	

factorization?   Can we characterize factorization violations 	

experimentally?

• Theory work in this direction is in progress in the SCET community.  	

Operators have been derived to accommodate Glauber Exchange 	

in SCET, without double counting anything. This goes beyond 	

having Glauber’s for a background medium. Interesting connections 	

to small x, Reggeization, BFKL, … (see eg. Fleming)
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Summary
• Any requests for desperately needed higher order perturbative QCD 

calculations?  eg. higher order jet cross sections for PDFs

•

•

Event shape variables for precision jet physics at EIC 	

(eg. strong coupling).  Optimal jet shapes for ions? for jets in 
medium?

• Fertile directions for probing hadronization:  double parton 	

distributions and collective hadronization in jets at RHIC/EIC/LHC

�1 = �0|Yn̄Yn�(· · · )Y †
n Y †

n̄ |0�

• Looking inside jets:   Jet Charge,  Track Functions, Jet Shapes, …

TMDPDFs and 2-photon Form Factors:  crucial places for further	

fertile interactions between theory and experiment

• Future:  Envision stronger connections in theory for both	

Cold and Hot QCD, and for Hard Scattering and Small-x communities


