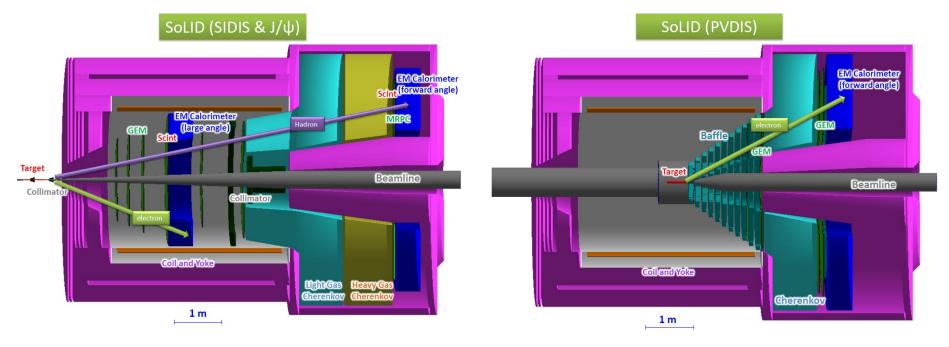
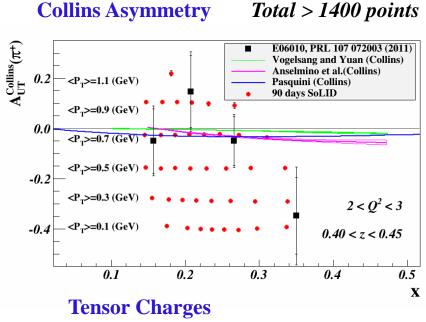
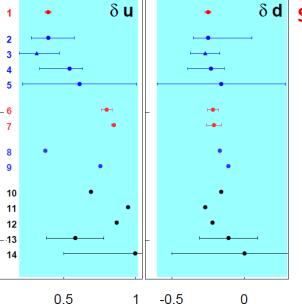
Overview of SoLID

Solenoidal Large Intensity Device


• Full exploitation of JLab 12 GeV Upgrade

→ A Large Acceptance Detector AND Can Handle High Luminosity (10^{37} - 10^{39}) Take advantage of latest development in detectors , data acquisitions and simulations Reach ultimate precision for SIDIS (TMDs), PVDIS in high-*x* region and threshold J/ ψ


•5 highly rated experiments approved

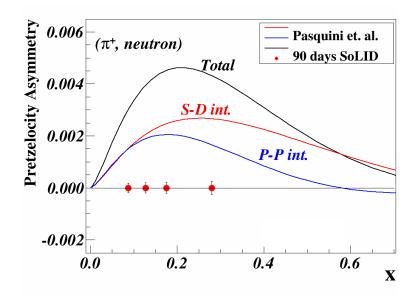

Three SIDIS experiments, one PVDIS, one J/ ψ production Bonus: di-hadron, Inclusive-SSA, and much more ...

•Strong collaboration (200+ collaborators from 50+ institutes, 11 countries) Significant international contributions

Nucleon Structure with SoLID-SIDIS

SoLID projections Extractions from existing data LQCD DSE Models

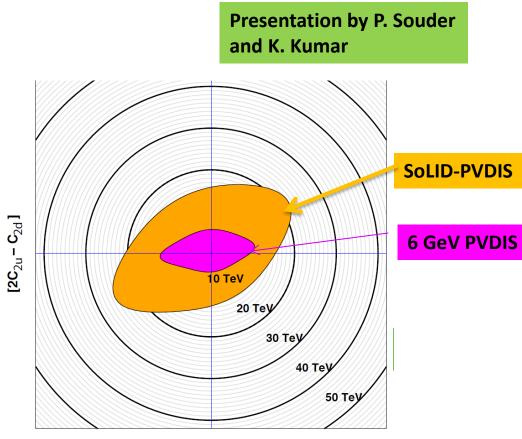
Semi-inclusive Deep Inelastic Scattering program:


Large Acceptance + High Luminosity

- + Polarized targets
- → 4-D mapping of Collins, Sivers, and pretzelocity asymmetries,...

→ Tensor charge of quarks, transversity distributions, TMDs...

→Benchmark test of Lattice QCD, probe QCD Dynamics and quark orbital motion


Pretzelosity \rightarrow **information on OAM**

Parity Violation with SoLID

Parity-violating Deep Inelastic Scattering:

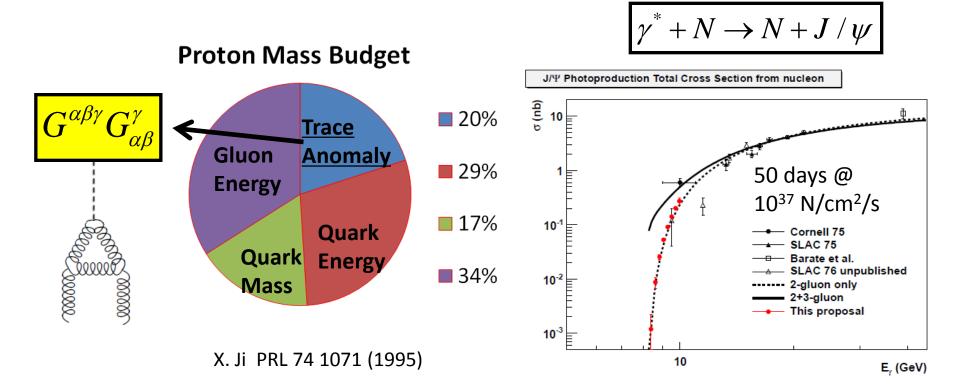
- High Luminosity on LD2 and LH2
- Better than 1% errors for small bins over large range kinematics
- Test of Standard Model
- Quark structure of nucleon: charge symmetry violation d/u at large x quark-gluon correlations

PVDIS asymmetry has two terms:

- 1) **C**_{2q} weak couplings, test of Standard Model
- 2) Unique precision information on **quark structure of nucleon**

[2C_{1u}-C_{1d}]

Mass reach in a composite model SoLID-PVDIS ~ 20 TeV (LHC scale)

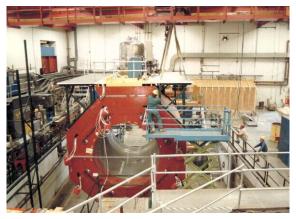

SoLID-J/ψ: Study Non-Perturbative Gluons

Presentation by Z. Zhao

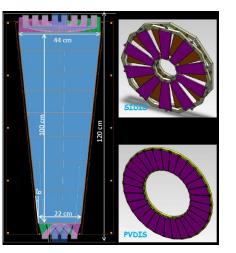
J/ψ : ideal probe of non-perturbative gluon

The <u>high luminosity & large acceptance</u> capability of SoLID enables a <u>unique</u> "precision" measurement near threshold

- Shed light on the low energy J/ψ-nucleon interaction (color Van der Waals force)
- Shed light on the 'conformal anomaly' an important piece in the proton mass budget: Models relate J/ ψ enhancement to trace anomaly

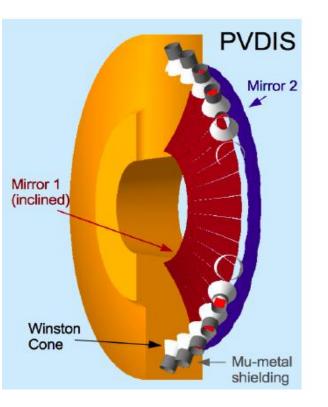

SoLID Timeline and Status

- 2010-2012 Five SoLID experiments approved by PAC (4 A, 1 A- rating)
 3 SIDIS with polarized ³He/p target, 1 **PVDIS**, 1 **threshold J/**ψ
- 2013: CLEO-II magnet formally requested and agreed
- 2014: Site visit, plan transportation to JLab (2016) 2010-2014: Progress
 - Spectrometer magnet, modifications
 - Detailed simulations
 - Detector pre-R&D
 - DAQ
- ✓ 2014: pre-CDR submitted for JLab Director's Review


Active collaboration,

200+ physicists from 50+ international institutions

Draft funding profile includes significant international contributions (China)


CLEO-II magnet

GEM R&D China/UVa

Backup

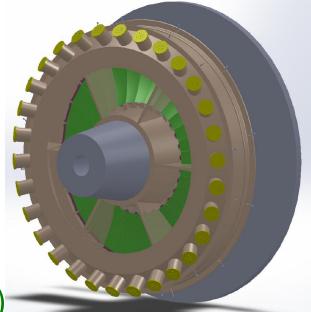
Progress in Detectors SIDIS/TMD Program

Light Gas Cerenkov (Temple)

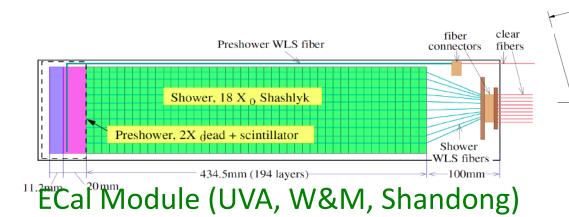
SoLID Detector Development

Simulations now with realistic backgrounds

84.6219


11.1760

5.5880


101.63

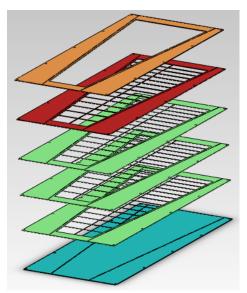
9.68

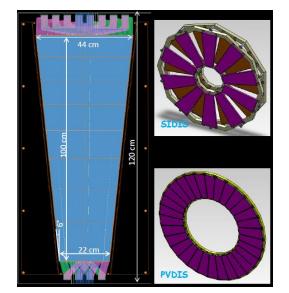
19.36

Heavy Gas Cerenkov (Duke)

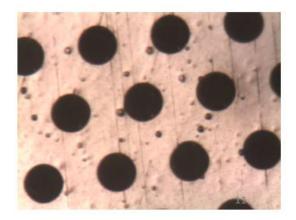
ECal Mounting Design (ANL)

10.0

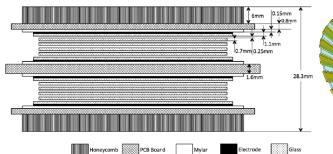

-6.5


R270.0

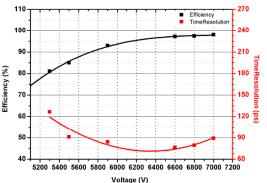
GEM Progress


Chinese Collaboration

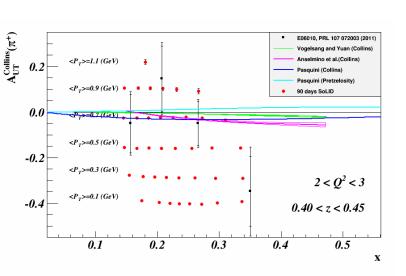
- First full size prototype assembled at UVA, tested in beam (Fermi Lab)
- 30x30 cm prototype constructed, readout tested (CIAE/USTC/Tsinghua/Lanzhou)
- GEM foil production facility under development at CIAE (China)



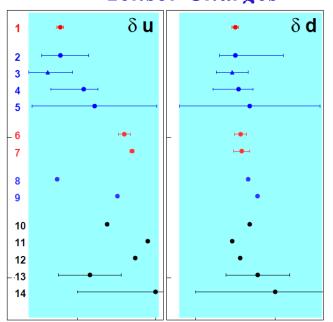
GEM foils made at CIAE


MRPC – High Resolution TOF

> 95 % efficiency Timing resolution ~ 85 ps



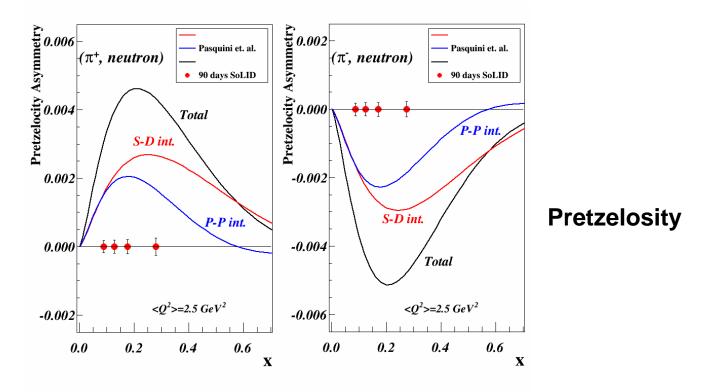
A MRPC prototype for SOLID-TOF in JLab Y. Wang, et al. JINST 8 (2013) P03003 (Tsinghua)


Transversity and Tensor Charge

- Collins Asymmetries ~ Transversity (x) Collin Function
- Transversity: chiral-odd, not couple to gluons, valence behavior, largely unknown
- Tensor charge (0th moment of transversity): fundamental property Lattice QCD, Bound-State QCD (Dyson-Schwinger), Light-cone Quark Models, ...
- Global model fits to experiments (SIDIS and e+e-)
- SoLID with trans polarized n & p → determination of tensor charges for d & u

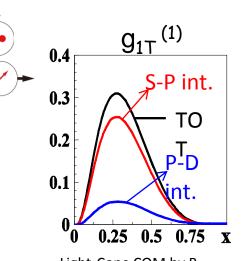
Collins Asymmetries

 P_T vs. x for one (Q², z) bin Total > 1400 data points

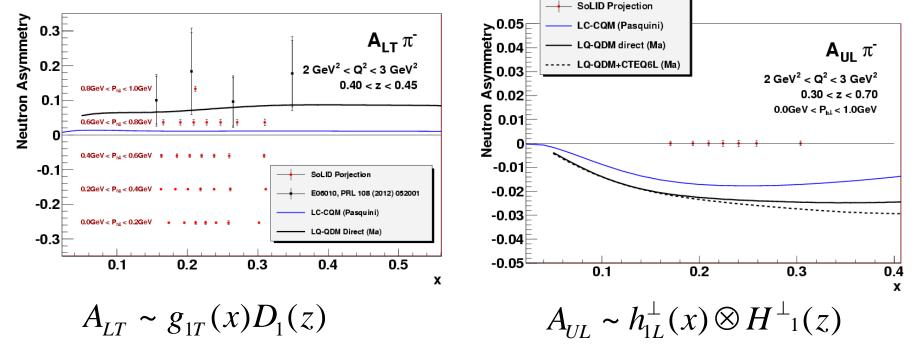

Tensor Charges

1 - 12 GeV SoLID (projection) **Extractions from experiments:** 2.3 - Anselmino et al. Phys.Rev. D87 (201 4 - Anselmino et al, Nucl. Phys. Proc. Su: 5 - Bacchetta, Courtoy, Radici, JHEP 130 Lattice QCD: 6 - Alexandrou et al, PoS(LATTICE 2014) 7 - Gockeler et al, Phys. Lett. B (2005) DSE: 8 - Pitschmann et al. (2014) 9 - Hecht, Roberts and Schmidt, Phys. Re Models: 10 - Cloet, Bentz and Thomas, Phys. Lett. 11 - Wakamatsu, Phys. Lett. B (2007) 12 - Pasquini et al, Phys. Rev. D (2007) 13 - Gamberg and Goldstein, Phys. Rev. I 14 - He and Ji, Phys. Rev. D (1995)

- 0.5 1 -0.5 0
- Projections with a model
- There are un-measured regions
- QCD evolutions being worked


TMDs: 3-d Structure, Quark Orbital Motion

- TMDs : Correlations of transverse motion with quark spin and orbital motion
- Without OAM, off-diagonal TMDs=0, no direct model-independent relation to the OAM in spin sum rule yet
- Sivers Function: QCD lensing effects
- In a large class of models, such as light-cone quark models
 Pretzelosity: ΔL=2 (L=0 and L=2 interference, L=1 and -1 interference)
 Worm-Gear: ΔL=1 (L=0 and L=1 interference)
- SoLID with trans polarized $n/p \rightarrow$ quantitative knowledge of OAM



Worm-gear Functions g_{1T} =

- Dominated by real part of interference between L=0 (S) and L=1 (P) states
- No GPD correspondence
- Exploratory lattice QCD calculation: Ph. Hägler et al, EPL 88, 61001 (2009)

Light-Cone CQM by B. Pasquini B.P., Cazzaniga, Boffi, PRD78, 2008

 $h_{11}^{\perp} =$

Neutron Projections,