Nuclei

at

Short Distance Scales

Patricia Solvignon UNH/JLab

NSAC 2014 Long Range Plan
Temple University, Philadelphia
September 13-15, 2014

What were 2007 LRP questions?

From R. Ransonne's Talk at the 2007 LRP meeting

How is the nucleon affected by the nuclear medium? Change in quark distribution Change in nucleon size and shape

How do we get from quarks and gluons to nucleons and mesons?

At what distance scale does this occur?
What are the signatures?
How does the nuclear force arise from QCD ?

JLab highlights from the last 7 years

The EMC effect

Super-fast quarks
Neutron structure function at high x

Hadronization
Color transparency

JLab 12 GeV program

The EMC effect
Super-fast quarks
Neutron structure function at high x

Hadronization
Color transparency

The EMC effect

Super-fast quarks
Neutron structure function at high x

Tensor structure functions
Hadronization
Color transparency

Quark distributions in nuclei

The EMC effect on light nuclei

${ }^{9} \mathrm{Be}$ has low average density, but large component of structure is $2 \alpha+n$ most nucleons in tight, α-like configurations

E12-10-008: EMC effect

A. Daniel, J. Arrington, D. Gaskell

Stable light nuclei: ${ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{6,7} \mathrm{Li},{ }^{9} \mathrm{Be},{ }^{10,11} \mathrm{~B}$ and ${ }^{12} \mathrm{C}$

- Nuclei with significant clustering contributions: will provide further information on the detailed behavior in these well-understood nuclei.
- For ${ }^{6,7} \mathrm{Li}$, the local density picture predicts an EMC effect well below the other models. - From nuclei which differ by just one proton or one neutron: measurement of the nuclear effects on a single proton or neutron.

Data for $0.1<\mathbf{x}<\mathbf{1}$ (DIS till $\mathrm{x}=0.8$):

- EMC effect with high precision at large x
precise measurements of the \mathbf{x} dependence in the low x region.

Data on ${ }^{40,48} \mathbf{C a}$:

- Isospin-dependence for the EMC effect
- Significant variation of the n / p ratio in the nucleus but similar mass and density.

E12-14-002: Nuclear dependence of R

S. Malace, E. Christy, D. Gaskell, C. Keppel, P. Solvignon

$$
\frac{\sigma_{A}}{\sigma_{D}} \simeq \frac{F_{2}^{A}}{F_{2}^{D}}\left[1-\frac{\Delta R(1-\epsilon)}{\left(1+R_{D}\right)\left(1+\epsilon R_{D}\right)}\right]
$$

really only true for $\varepsilon=1$

$$
\frac{\sigma_{A}}{\sigma_{D}} \simeq \frac{F_{1}^{A}}{F_{1}^{D}}\left[1+\frac{\epsilon \Delta R}{\left(1+\epsilon R_{D}\right)}\right]
$$

really only true for $\varepsilon=0$

Recent analyses showed $R_{A}-R_{D} \neq 0$--> implications to medium modifications in the anti-shadowing and in the EMC effect regions

E12-14-002 will measure via true, model-independent Rosenbluth $L / T s \mathbf{R}_{\mathrm{A}}-\mathbf{R}_{\mathrm{D}}$ in one dedicated experiment

E12-14-002: Impact for σ_{A} / σ_{D}

S. Malace, E. Christy, D. Gaskell, C. Keppel, P. Solvignon

$>$ Constrain/verify the universality of nuclear modification in σ_{A} / σ_{D}
$>$ Provide experimental constraints for nuclear PDF fits from separated structure functions

JLab E02-019: quarks in SRC

Inelastic contribution increases with Q^{2}
DIS begins to contribute at $\mathrm{x}>1$

"super-fast" quarks
SRC dominates at $\mathrm{x} \gtrsim 1.3$ and $\mathrm{Q}^{2} \gtrsim 1.5 \mathrm{GeV}^{2}$

As Q^{2} increases, we expect to see evidence that we are scattering from a quark at $x>1$, i.e. x-scaling.

JLab E02-019: quarks in SRC

N. Fomin et al, PRL105, 212502 (2010)

After applying QCD evolution and TMC, we should be left with quark distributions

Slope s in $\exp (-s \xi)$

JLab E12-06-105: x>1

J. Arrington, D. Day, N. Fomin, P. Solvignon

- Higher Q^{2} to directly access parton distributions of super-fast quarks in nuclei
- Great sensitivity to multi-quarks configurations
- Access $2 \mathrm{~N}, 3 \mathrm{~N}$ and 4 N -SRC

Extracting the neutron structure function from lightest nuclei

Bonus
 (Experiment e8 w/ CLAS)

CTEQ-JLab (CJ) fit of world data with various deuteron models

The Problem: nuclear binding uncertainties prevent us from knowing $F_{2 n}$ in the resonance region and $d / u(x \rightarrow 1)$ The Solution: tag slow spectator protons in $d\left(e, e^{\prime} p_{s}\right) X$ with a "radial TPC" (below) to select events on "nearly free" neutrons and to correct for their initial motion.

Results: Unsmeared resonance spectrum
Large $x F_{2 n} / F_{2 p}$ ratio (to access d / u).

slides for S. Kuhn
S. Bultmann, S. Kuhn, E. Christy, C. Keppel, H. Fenker, W. Melnitchouk, K. Griffioen

BONuS at 12 GeV E12-06-113

slides for S. Kuhn

$\mathrm{F}_{2}{ }^{\mathrm{n}}$ from the ratio of $\mathrm{A}=3$ mirror nuclei

Measure F_{2} 's and form ratios:

$$
R\left({ }^{3} \mathrm{He}\right)=\frac{F_{2}^{3} \mathrm{He}}{2 F_{2}^{p}+F_{2}^{n}}, R\left({ }^{3} H\right)=\frac{F_{2}^{{ }^{3} H}}{F_{2}^{p}+2 F_{2}^{n}}
$$

Form "super-ratio": $\quad r \equiv \frac{R\left({ }^{3} \mathrm{He}\right)}{R\left({ }^{3} \mathrm{H}\right)}$

E12-10-008: MARATHON

G. Petratos, J. Gomez, R. Holt, R. Ransome

Tensor polarized deuteron program

Tensor Structure Functions

$$
\begin{array}{rlr}
W_{\mu \nu}= & -F_{1} g_{\mu \nu}+F_{2} \frac{P_{\mu} P \nu}{\nu} & \begin{array}{l}
\text { Frankfurt \& Strikman (1983) } \\
\text { Hoodbhoy, Jaffe, Manohar (19 }
\end{array} \\
& +i \frac{g_{1}}{\nu} \epsilon_{\mu \nu \lambda \sigma} q^{\lambda} s^{\sigma}+i \frac{g_{2}}{\nu^{2}} \epsilon_{\mu \nu \lambda \sigma} q^{\lambda}\left(p \cdot q s^{\sigma}-s \cdot q p^{\sigma}\right) \\
& -b_{1} r_{\mu \nu}+\frac{1}{6} b_{2}\left(s_{\mu \nu}+t_{\mu \nu}+u_{\mu \nu}\right) & \\
& +\frac{1}{2} b_{3}\left(s_{\mu \nu}-u_{\mu \nu}\right)+\frac{1}{2} b_{4}\left(s_{\mu \nu}-t_{\mu \nu}\right) & \text { Tensor Polarized } \\
\text { Spin-1 Target }
\end{array}
$$

Tensor Structure Functions

$$
\begin{array}{rlr}
W_{\mu \nu}= & -F_{1} g_{\mu \nu}+F_{2} \frac{P_{\mu} P \nu}{\nu} & \begin{array}{l}
\text { Frankfurt \& Strikman (1983) } \\
\text { Hoodbhoy, Jaffe, Manohar (1989) }
\end{array} \\
& +i \frac{g_{1}}{\nu} \epsilon_{\mu \nu \lambda \sigma} q^{\lambda} s^{\sigma}+i \frac{g_{2}}{\nu^{2}} \epsilon_{\mu \nu \lambda \sigma} q^{\lambda}\left(p \cdot q s^{\sigma}-s \cdot q p^{\sigma}\right) \\
& -b_{1} r_{\mu \nu}+\frac{1}{6} b_{2}\left(s_{\mu \nu}+t_{\mu \nu}+u_{\mu \nu}\right) & \\
& +\frac{1}{2} b_{3}\left(s_{\mu \nu}-u_{\mu \nu}\right)+\frac{1}{2} b_{4}\left(s_{\mu \nu}-t_{\mu \nu}\right) & \text { Tensor Polarized } \\
\text { Spin-1 Target }
\end{array}
$$

b1: Nice mix of nuclear and quark physics
measured in DIS (so probing quarks), but depends solely on the deuteron spin state

We can investigate nuclear effects at the level of partons!

E12-13-011 : b_{1}

JLab Hall C Inclusive Scattering

$$
P_{z z}=35 \% \text { Tensor Polarized } \mathrm{ND}_{3}
$$

E12-13-011 : b_{1}

A- Rating, C_{1} Approval
Slifer(contact), Chen, Long, Kalantarians, Keller, Rondon, Solvignon

JLab Hall C Inclusive Scattering

$$
P_{z z}=35 \% \text { Tensor Polarized } \mathrm{ND}_{3}
$$

Sensitive to tensor pol of quark sea
Allows test of CK Sum Rule

$$
\int_{0}^{1} d x b_{1}(x)=0
$$

Clean Probe of Hidden Color

G. Miller, Phys.Rev. C89 (2014) 045203
no conventional nuclear mechanism can reproduce the Hermes data, but that the 6-quark probability needed to do so ($P_{6 Q}=0.0015$) is small enough that it does not violate conventional nuclear physics.

Verification of bl Zero-Crossing

critical for satisfaction of CK sum rule clear signature of exotic effects

Sum rule for the $2^{\text {nd }}$ moment of deuteron's b_{1}

- Must give zero if summed over quarks, antiquarks and gluons
- Deuteron as isoscalar target provides sum of light quarks contributions
- Deviation from zero signals on the collective tensor polarized glue, like the quarks momentum $\sim 1 / 2$ indicated the gluons existence
- Also probes the quarks coupling to gravity and equivalence principle
Mod.Phys.Lett. A24 (2009) 2831-2837

LOI12-14-002
Long(contact), Day, Higinbothan, Keller, Slifer, Solvignon

Azz for $x>1$

$\mathrm{P}_{\mathrm{zz}}=35 \%$ Tensor Polarized ND_{3}
$\mathrm{A}_{\mathrm{zz}} \approx 1$ in this region
Direct probe of Tensor force
SRCs and pn dominance
Sensitive to S-wave/D-wave ratio
Encouraged for full submission by PAC42 slides for K. Slifer

b4 structure function (aka Δ)
Polarized ${ }^{14} \mathrm{NH}_{3}$ Target
Non-zero value would be a clear signature of exotic gluon states in the nucleus

Encouraged for full submission by PAC42

How do we get from quarks and gluons to nucleons and mesons?

Hadronization Physics: E-02-104 and E12-06-117

- Hadronization: a QCD puzzle for more than four decades
- Fundamental process, but nonperturbative:
- time-based, so not historically accessible with lattice QCD
- constrained by hadron multiplicities, but these are not sensitive to dynamics at the femtometer scale
- Now there is a new opportunity:
- Identified hadrons + nuclear targets + high luminosity
- Access to color propagation, neutralization, and fluctuations

What we are learning

- Can constrain the virtual quark lifetime via Pt broadening
- @| 2 GeV : should clearly see time dilation with increasing v
- Quark energy loss is significantly less than $-\frac{\mathrm{dE}}{\mathrm{dx}}=\frac{\alpha_{\mathrm{s}} \mathrm{N}_{\mathrm{c}}}{4} \Delta \mathrm{p}_{\mathrm{T}}^{2}$
- @| 2 GeV : probing the critical energy region
- New@I2 GeV: polarization degrees of freedom - SSA and more

What we are learning

- Can constrain hadron formation time via pt broadening
- @|2 GeV: rare hadrons (ϕ meson); baryon hadronization; hadron mass dependence and flavor content
- Multiplicity ratios, and thus hadronization mechanisms, have at least 3-fold differential kinematic dependences

Neutral pion, 3-fold differential multiplicity ratio, z dependence vs. v and Q^{2}

The Onset of Color Transparency

JLab Experiments conclusively find the onset of CT

- Hall-C Experiment E01-107 pion electroproduction from nuclei found an enhancement in transparency with increasing $Q^{2} \& A$, consistent with the prediction of CT.
(X. Qian et al., PRC81:055209 (2010),
B. Clasie et al, PRL99:242502 (2007))
- CLAS Experiment EO2-110 rho electroproduction from nuclei found a similar enhancement, consistent with the same predictions
(L. El-Fassi, et al., PLB 712, 326 (2012))

FMS: Frankfurt, Miller and Strikman, Phys. Rev., C78: 015208, 2008

Meson Transparency @ I I GeV

Both pion and rho transparency measurements will be extended at II GeV to the highest $\mathbf{Q}^{\mathbf{2}}$ accessible
will verify the strict applicability of factorization theorems for meson electroproduction

Proton Transparency @ I I GeV

A(e,e'p) @ I I GeV JLab El2-06-107

| 2.9 | 5.1 | 7.3 | 9.6 |
| :--- | :--- | :--- | :--- |$\quad \mathrm{P}_{\mathrm{p}}(\mathrm{GeV} / \mathrm{c})$

Quarks in Nuclei at JLab 12 GeV

The EMC effect:

- Extended study on the local density effect and first study of the isospin dependence
- Is the SRC-EMC relationship real and what is the origin?
- Also related: Nuclear dependence of R, super-fast quarks and extraction of the neutron structure function

Tensor Structure functions:

- Another way to look at nuclear effect at the parton level
- High sensitivity to hidden color
- Access to possible novel partonic components in nuclei

Hadronization at 12 GeV :

- High sensitivity to time dilation and quark energy loss
- Constraint on hadron formation time

Color transparency at 12 GeV :

- Unique probe of the space-time evolution of special configurations of the hadron WF
- Disentangle different effects: small-size-configuration (SSC) creation, its formation and interaction with the nuclear medium

Ackownledgements

Thanks to
John Arrington, Will Brooks, Donal Day, Dipangkar
Dutta, Nadia Fomin, Kawtar Hafidi, Sebastian Kuhn,
James Maxwell, Karl Slifer, Oleg Terayev for providing slides and comments.

EXTRA SLIDES

Hadronization

Issues

1) Structure of two nucleon SRC - S vs D wave
(polarized deuteron or measurement of the polarization in the final state)
2) Discovery of the nonnucleonic degrees of freedom in nuclei - we know that they present (EMC effect) etc - but this is indirect.
this includes tagged EMC effect in the deuteron, looking for Delta isobars,...
3) Direct observation of the three nucleon correlations
4) Testing different treatments of the relativistic descriptions of nuclei.
5) Observing superfast ($x>1$) quarks in nuclei in DIS at Jlab 12.

EMC vs. SRC

O. Hen, E. Piasetzky and L. Weinstein, PRC85, 047301 (2012)
L. Weinstein, E. Piasetzky, D. Higinbotham, J. Gomez, O. Hen and R. Shneor, PRL106, 052301 (2011)

MARATHON: Physics motivations

$\mathrm{SU}(6)$-symmetric wave function of the proton in the quark model (spin up):

$$
|p \uparrow\rangle=\frac{1}{\sqrt{18}}\left(3 u \uparrow[u d]_{S=0}+u \uparrow[u d]_{S=1}-\sqrt{2} u \downarrow[u d]_{S=1}-\sqrt{2} d \uparrow[u u]_{S=1}-2 d \downarrow[u u]_{S=1}\right)
$$

u and d quarks identical, N and Δ would be degenerate in mass.
In this model: $\mathrm{d} / \mathrm{u}=1 / 2, \mathrm{~F}_{2} \mathrm{n} / \mathrm{F}_{2} \mathrm{p}=2 / 3$.

PQCD: helicity conservation ($q \uparrow \uparrow p$)
$\Rightarrow d / u=2 /(9+1)=1 / 5, F_{2}{ }^{n} / F_{2} p=3 / 7$ for $x \rightarrow 1$
$S U(6)$ symmetry is broken: $N-\Delta$ Mass Splitting

- Mass splitting between $\mathrm{S}=\mathrm{I}$ and $\mathrm{S}=0$ diquark spectator.
- symmetric states are raised, antisymmetric states are lowered ($\sim 300 \mathrm{MeV}$).
- $\mathrm{S}=$ I suppressed
$\Rightarrow d / u=0, F_{2} n / F_{2} p=1 / 4$, for $x \rightarrow 1$

