Summary of Pre-town Meeting on SPIN Physics at future Electron Ion Collider

Prepared by: Alexei Prokudin, Leonard Gamberg Zhongbo Kang

Electron Ion Collider: The Next QCD Frontier

September 13, 2014

Pre-town meeting at Jefferson Lab

- Meeting

August 13-15, 2014
Thomas Jefferson National Accelerator Facility

- Goals

The goal of this meeting was to have a critical number of scientists from the Spin physics community gathered with the purpose to update and sharpen our message as it relates to the case for the Electron Ion Collider in the USA

- Participants

44 scientists from JLab, BNL, LBNL, LANL, SLAC and other labs and universities including 6 remote participants from Europe

- Results
http://www.jlab.org/conferences/pretownjlab2014/

Electron Ion Collider in the USA

Broad agreement of the Spin physics community that the next facility should be Electron Ion Collider

Explore "sea" quark and gluon dominated region.
From the White Paper:

- High luminosity up to

$$
L \sim 10^{34}\left(\mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)
$$

- Variable energy range

$$
\sqrt{s}=\sim 20 \text { to } \sim 100(\mathrm{GeV})
$$

- Polarized, longitudinally and transversely, for the proton and light-ions
- Unpolarized heavy-ion beams
- wide acceptance detector and good PID

EIC White Paper (2012) is an excellent summary of EIC physics

The goal of the meeting was to review progress in the last 2 years in SPIN physics and "3-D" structure of the nucleon

Helicity structure at EIC

W. Vogelsang E. Aschenauer W. Melnitchouk
E. Sichtermann J. Qiu

Many others

Without EIC we will never have a good quantitative knowledge of Spin decomposition of the nucleon

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+L_{q}+\Delta G+L_{g}
$$

Current knowledge

PRL 113, 012001 (2014)

EIC White Paper

Helicity structure at EIC

W. Vogelsang E. Aschenauer W. Melnitchouk
E. Sichtermann J. Qiu

Many others

Without EIC we will never have a good quantitative knowledge of Spin decomposition of the nucleon

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+L_{q}+\Delta G+L_{g}
$$

Also functions, not only integrated quantities
No other facility in the World can do it!
F. Yuan \quad X. Ii
C. Weiss
A. Radyushkin
M. Burkardt

Wigner function
Transverse Momentum Dependent distributions
TADs

SD

$W\left(x, k_{\perp}, r_{\perp}\right)$
\odot

3D

GPDs
F. Yuan
X. Ji
C. Weiss
A. Radyushkin
M. Burkardt

TMDs

Enormous progress of understanding of evolution. We are able to span energies of JLab 6 GeV up to LHC

$$
\sqrt{s} \sim 7 \mathrm{TeV}
$$

Publication by JLab, HERMES, COMPASS data on multiplicities is an essential step forward towards better understanding of TMDs
$x f_{1}\left(x, k_{T}, S_{T}\right)$

GPDs

Important progress of analysis of EIC impact

JHEP 1309 (2013) 093
F. Yuan
X. Ji

Data of EIC is essential for our understanding of hadron structure in the regime dominated by "sea" quarks and gluons
\bar{u} TMD Sivers function at EIC

Sea quark GPD functions at EIC

Progress of lattice QCD and other non-perturbative methods is very encouraging and is complementary to our experimental goals of EIC

We are going to discover new phenomena and new structures associated with hadron dynamics

Spin physics community is thrilled about the prospect of building an Electron Ion Collider in the USA

3D structure of the nucleon

F. Yuan
X. Ji
A. Radyushkin Many others

Data of EIC is essential for our understanding of hadron structure in the regime dominated by "sea" quarks and gluons
\bar{u} TMD Sivers function at EIC

Sea quark GPD functions at EIC

Progress of lattice QCD and other non-perturbative methods is very encouraging and is complementary to our experimental goals of EIC

We are going to discover new phenomena and new structures associated with hadron dynamics

Spin physics community is thrilled about the prospect of building an Electron Ion Collider in the USA

THANK YOU!

Overview of SoLID

Solenoidal Large Intensity Device

- Full exploitation of JLab 12 GeV Upgrade
\rightarrow A Large Acceptance Detector AND Can Handle High Luminosity ($10^{37}-10^{39}$)
Take advantage of latest development in detectors, data acquisitions and simulations Reach ultimate precision for SIDIS (TMDs), PVDIS in high-x region and threshold J/ ψ
- 5 highly rated experiments approved

Three SIDIS experiments, one PVDIS, one J/ ψ production
Bonus: di-hadron, Inclusive-SSA, and much more ...

- Strong collaboration (200+ collaborators from 50+ institutes, 11 countries)

Significant international contributions

Nucleon Structure with SoLID-SIDIS

Collins Asymmetry Total > 1400 points

Tensor Charges

Semi-inclusive Deep Inelastic Scattering program:
Large Acceptance + High Luminosity + Polarized targets
\rightarrow 4-D mapping of Collins, Sivers, and pretzelocity asymmetries,...
\rightarrow Tensor charge of quarks, transversity distributions, TMDs...
\rightarrow Benchmark test of Lattice QCD, probe QCD Dynamics and quark orbital motion

Pretzelosity \rightarrow information on OAM

Parity Violation with SoLID

Parity-violating Deep

 Inelastic Scattering:- High Luminosity on LD2 and LH2
- Better than 1% errors for small bins over large range kinematics
- Test of Standard Model
- Quark structure of nucleon: charge symmetry violation d / u at large x quark-gluon correlations

PVDIS asymmetry has two terms:

1) $C_{2 q}$ weak couplings, test of Standard Model
2) Unique precision information on quark structure of nucleon

Presentation by P. Souder and K. Kumar

Mass reach in a composite model SoLID-PVDIS ~ 20 TeV (LHC scale)

SoLID-J/ $\psi:$ Study Non-Perturbative Gluons

J / Ψ : ideal probe of non-perturbative gluon
The high luminosity \& large acceptance_capability of SoLID enables a unique "precision" measurement near threshold

- Shed light on the low energy J/ Ψ-nucleon interaction (color Van der Waals force)
- Shed light on the 'conformal anomaly' an important piece in the proton mass budget: Models relate J/ Ψ enhancement to trace anomaly

Proton Mass Budget

X. Ji PRL 741071 (1995)

$$
\gamma^{*}+N \rightarrow N+J / \psi
$$

J/Y Photoproduction Total Cross Section from nucleon	
	10 E $\mathrm{E}_{\gamma}(\mathrm{GeV})$

SoLID Timeline and Status

- 2010-2012 Five SoLID experiments approved by PAC (4 A, 1 A- rating) 3 SIDIS with polarized ${ }^{3} \mathrm{He} / \mathrm{p}$ target, 1 PVDIS, 1 threshold J / ψ
- 2013: CLEO-II magnet formally requested and agreed
- 2014: Site visit, plan transportation to JLab (2016)

2010-2014: Progress

- Spectrometer magnet, modifications
- Detailed simulations
- Detector pre-R\&D
- DAQ
\checkmark 2014: pre-CDR submitted for JLab Director's Review

CLEO-II magnet

Active collaboration, 200+ physicists from 50+ international institutions

Draft funding profile includes significant international contributions (China)

GEM R\&D
China/UVa

Backup

Progress in Detectors SIDIS/TMD Program

LS fibers -
"ELCal"Module (UVA, W\&M, Shandong)
ECal Mounting Design (ANL)

GEM Progress

Chinese Collaboration

- First full size prototype assembled at UVA, tested in beam (Fermi Lab)
- $30 \times 30 \mathrm{~cm}$ prototype constructed, readout tested (CIAE/USTC/Tsinghua/Lanzhou)
- GEM foil production facility under development at CIAE (China)

GEM foils made at CIAE

> 95 \% efficiency
MRPC - High Resolution TOF

A MRPC prototype for SOLID-TOF in JLab Y. Wang, et al. JINST 8 (2013) P03003 (Tsinghua)

Transversity and Tensor Charge

- Collins Asymmetries ~ Transversity (x) Collin Function
- Transversity: chiral-odd, not couple to gluons, valence behavior, largely unknown
- Tensor charge (Oth moment of transversity): fundamental property Lattice QCD, Bound-State QCD (Dyson-Schwinger) , Light-cone Quark Models, ...
- Global model fits to experiments (SIDIS and e+e-)
- SoLID with trans polarized $\mathbf{n} \& \boldsymbol{p} \rightarrow$ determination of tensor charges for $\mathbf{d} \& \mathbf{u}$

Collins Asymmetries

P_{T} vs. x for one $\left(Q^{2}, z\right)$ bin
Total > 1400 data points

Tensor Charges

- Projections with a model
- There are un-measured regions
- QCD evolutions being worked

TMDs: 3-d Structure, Quark Orbital Motion

- TMDs : Correlations of transverse motion with quark spin and orbital motion
- Without OAM, off-diagonal TMDs=0, no direct model-independent relation to the OAM in spin sum rule yet
- Sivers Function: QCD lensing effects
- In a large class of models, such as light-cone quark models

Pretzelosity: $\Delta \mathrm{L}=2$ ($\mathrm{L}=0$ and $\mathrm{L}=2$ interference, $\mathrm{L}=1$ and -1 interference)
Worm-Gear: $\Delta \mathrm{L}=1$ ($\mathrm{L}=0$ and $\mathrm{L}=1$ interference)

- SoLID with trans polarized $n / p \rightarrow$ quantitative knowledge of OAM

Pretzelosity

Worm-gear Functions
 - Dominated by real part of interference between $L=0(S)$ and $L=1(P)$ states
 - No GPD correspondence
 - Exploratory lattice QCD calculation:
 Ph. Hägler et al, EPL 88, 61001 (2009)

Neutron Projections,

$A_{L T} \sim g_{1 T}(x) D_{1}(z)$

$$
A_{U L} \sim h_{1 L}^{\perp}(x) \otimes H^{\perp}{ }_{1}(z)
$$

Polarized Dell-Yan at Fermilab

APS LRP:

Joint Town Meetings on QCD

(13-September, 2014)

Wolfgang Lorenzon

UNiversity of Michigan

- Unpolarized Drell-Yan at Fermilab:
\rightarrow SeaQuest [E-906]:
\longrightarrow science run:
- Polarized Drell-Yan at Fermilab:
\longrightarrow polarized Target [E-1039]:
\longrightarrow polarized Beam [E-1027]:
- Present status \& needs

Planned Polarized Drell-Yan Experiments

Experiment	Particles	Energy (GeV)	x_{b} or x_{t}	$\underset{\left(\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)}{\text { Luminosity }}$	$A^{\sin \phi_{s}}$	P_{b} or $\mathrm{P}_{\mathrm{t}}(\mathrm{f})$	rFOM ${ }^{*}$	Timeline
COMPASS (CERN)	$\pi^{ \pm}+\mathbf{p}^{\uparrow}$	$\begin{aligned} & 160 \mathrm{GeV} \\ & \sqrt{ }=17 \end{aligned}$	$\mathrm{x}_{\mathrm{t}}=0.1-0.3$	2×10^{33}	0.14	$\begin{aligned} P_{t} & =90 \% \\ f & =0.22 \end{aligned}$	1.1×10^{-3}	2014, 2018
PANDA (GSI)	$\overline{\mathbf{p}}+\mathbf{p}^{\uparrow}$	$\begin{aligned} & 15 \mathrm{GeV} \\ & \sqrt{s}=5.5 \end{aligned}$	$\mathrm{x}_{\mathrm{t}}=0.2-0.4$	2×10^{32}	0.07	$\begin{aligned} P_{t} & =90 \% \\ f & =0.22 \end{aligned}$	1.1×10^{-4}	>2018
$\begin{aligned} & \text { PAX } \\ & \text { (GSI) } \end{aligned}$	$p^{\uparrow}+\bar{p}$	collider $V_{s}=14$	$\mathrm{x}_{\mathrm{b}}=0.1-0.9$	2×10^{30}	0.06	$\mathrm{P}_{\mathrm{b}}=90 \%$	2.3×10^{-5}	>2020?
NICA (JINR)	$p^{\uparrow}+\mathbf{p}$	collider $V_{s}=26$	$\mathrm{x}_{\mathrm{b}}=0.1-0.8$	1×10^{31}	0.04	$\mathrm{P}_{\mathrm{b}}=70 \%$	6.8×10^{-5}	>2018
PHENIX/STAR (RHIC)	$\mathbf{p}^{\uparrow}+\mathbf{p}^{\uparrow}$	collider $V_{s}=510$	$\mathrm{x}_{\mathrm{b}}=0.05-0.1$	2×10^{32}	0.08	$P_{b}=60 \%$	1.0×10^{-3}	>2018
fsPHENIX (RHIC)	$\mathbf{p}^{\uparrow}+\mathbf{p}^{\uparrow}$	$\begin{aligned} & V_{s}=200 \\ & V_{s}=510 \end{aligned}$	$\begin{gathered} x_{b}=0.1-0.5 \\ x_{b}=0.05-0.6 \end{gathered}$	$\begin{aligned} & 8 \times 10^{31} \\ & 6 \times 10^{32} \end{aligned}$	0.08	$\begin{aligned} & P_{b}=60 \% \\ & P_{b}=50 \% \end{aligned}$	$\begin{aligned} & 4.0 \times 10^{-4} \\ & 2.1 \times 10^{-3} \end{aligned}$	>2021
SeaQuest (FNAL: E-906)	$p+p$	$\begin{aligned} & 120 \mathrm{GeV} \\ & \sqrt{\mathrm{~s}}=15 \end{aligned}$	$\begin{aligned} & x_{b}=0.35-0.9 \\ & x_{t}=0.1-0.45 \end{aligned}$	3.4×10^{35}	---	---	---	2012-2015
Pol tgt DY ${ }^{\ddagger}$ (FNAL: E-1039)	$p+p^{\uparrow}$	$\begin{aligned} & 120 \mathrm{GeV} \\ & \sqrt{s}=15 \end{aligned}$	$\mathrm{x}_{\mathrm{t}}=0.1-0.45$	4.4×10^{35}	$\begin{gathered} 0- \\ 0.2^{*} \end{gathered}$	$\begin{gathered} P_{t}=88 \% \\ f=0.176 \end{gathered}$	0.15	2016
Pol beam DY ${ }^{\S}$ (FNAL: E-1027)	$p^{\uparrow}+p$	$\begin{aligned} & 120 \mathrm{GeV} \\ & V_{\mathrm{s}}=15 \end{aligned}$	$\mathrm{x}_{\mathrm{b}}=0.35-0.9$	2×10^{35}	0.04	$P_{\text {b }}=60 \%$	1	>2018
${ }^{\ddagger} 8 \mathrm{~cm} \mathrm{NH}_{3}$ target $/{ }^{\S} \mathrm{L}=1 \times 10^{36} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\left(\mathrm{LH}_{2}\right.$ tgt limited) / $\mathrm{L}=2 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (10% of MI beam limited) 								

Polarized Beam Drell-Yan at Fermilab (E-1027)

- Polarized Drell-Yan:
\rightarrow QCD (and factorization) require sign change

$$
\left.f_{1 T}^{\perp}\right|_{S D D S}=-\left.f_{1 T}^{\perp}\right|_{D Y}
$$

\rightarrow major milestone in hadronic physics (HP13)

- Extraordinary opportunity at Fermilab (best place for polarized DY) :
\rightarrow high luminosity, large x-coverage
\rightarrow (SeaQuest) spectrometer already setup and running
\rightarrow run alongside neutrino program (w/ 10\% of beam)
\rightarrow experimental sensitivity:
) 2 yrs at 50% eff, $P_{b}=60 \%, I_{a v}=15 \mathrm{nA}$
) luminosity: $\mathrm{L}_{\mathrm{av}}=2 \times 10^{35} / \mathrm{cm}^{2} / \mathrm{s}$
- Path to polarized proton beam at Main Injector

\rightarrow perform detailed design studies
- Cost estimate to polarize Main Injector \$10M (total) \rightarrow includes M\&S, labor, 15% project management \& 50% contingency
- Measure DY with both Beam or/and Target polarized \rightarrow broad spin physics program possible

A Novel, Compact Siberian Snake for the Main Injector

Single snake design (6.4m long):
-1 helical dipole +2 conv. dipoles

- helix: $4 \mathrm{~T} / 5.6 \mathrm{~m} / 4$ " ID
- dipoles: 4T / 0.2 m / 4" ID
- use one 4-twist helical magnet
-8π rotation of B field
- never done before in a high energy ring
- RHIC uses snake pairs
- 4 single-twist magnets (2π rotation ea)

Path to polarized proton beam at MI

- detailed design studies: $\$ 300 \mathrm{k} \quad$ (short-term)
- implement modifications to MI \$10M (longer-term)

Needs

initial design studies

- endorsement in LRP document

Polarized Beam Drell-Yan at Fermilab (E-1039)

- Probe Sea-quark Sivers Asymmetry with a polarized proton target at SeaQuest

- Statistics shown for one calendar year of running:
$-\mathrm{L}=7.2{ }^{* 1042} / \mathrm{cm}^{2} \leftrightarrow \mathrm{POT}=2.8^{*} 10^{18}$
- Running will be two calendar years of beam time
- existing SIDIS data poorly constrain sea-quark Sivers function
- significant Sivers asymmetry expected from meson-cloud model
- first Sea Quark Sivers Measurement
- determine sign and value of \bar{u} Sivers distribution

If $A_{N} \neq 0$, major discovery:
"Smoking Gun" evidence for $L_{\bar{u}} \neq 0$

Status and Plans (E-1039)

Target

Polarization: 85\%
Packing fraction 0.6
Dilution factor: 0.176
Density: $0.89 \mathrm{~g} / \mathrm{cm}^{3}$

COMPASS, E-1027, E-1039 (and Beyond)

	Beam Pol.	Target Pol.	Favored Quarks	Physics Goals			
				(Sivers Function)			$L_{\text {sea }}$
				sign change	size	shape	
COMPASS $\pi^{-} p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X$	X	\checkmark	valence	\checkmark	X	X	X
$\begin{gathered} \mathrm{E}-1027 \\ p^{\uparrow} p \rightarrow \mu^{+} \mu^{-} X \end{gathered}$	\checkmark	X	valence	\checkmark	\checkmark	\checkmark	X
$p p^{\stackrel{\mathrm{E}-1039}{\rightarrow} \mu^{+} \mu^{-} X}$	X	\checkmark	sea	X	\checkmark	\checkmark	\checkmark
$\begin{gathered} \mathrm{E}-10 \mathrm{XX} \\ p^{\uparrow} p^{\uparrow} \rightarrow \mu^{+} \mu^{-} X \\ \vec{p} \vec{p} \rightarrow \mu^{+} \mu^{-} X \end{gathered}$	\checkmark	\checkmark	sea \& valence	Transversity, Helicity, Other TMDs ...			

Polarized Drell-Yan Recommendation Text for the QCD Town Meeting

- A high-luminosity polarized Drell-Yan program at the Fermilab Main Injector with both polarized beams and targets is endorsed by the U.S. QCD community.

The Importance of a New Transverse Spin Program at RHIC and Its Impacts on Future e+p Physics Ming Liu (Los Alamos)

QCD Challenges

- Universality
- Predictions

When "pp" and "DIS" Confront Each Other: A Surprise!

First attempt to test the universal QCD descriptions of TSSA in $p+p$ and $e+p$

- What are the sources of the large TSSA in $p+p$?
- Long-standing puzzle ~ 40 years
- Sivers and Collins effects observed in SIDIS
- Are they universal?
- p+p vs SIDIS

9/8/14

Urgency: Experimental resolution!

- SIDIS:
- Sivers and Collins separated
- Limited to "small" (x, Q ${ }^{2}$)
- Need EIC to help!
- $\quad p+p:$
- Inclusive TSSA, mix of effects
- Limited to "large" (x, Q^{2})
- Need new data to overlap SIDIS!

Proposal: New Transverse Spin/TMD Physics at RHIC

 Discover Novel QCD Structures and Dynamics at RHIC- New Opportunity at RHIC - the world only polarized $p+p$ Collider
- First unambiguous measurements of initial and final state spin asymmetries in $\mathrm{p}+\mathrm{p}$
- Jet "Sivers" asymmetry
- Intra-Jet "Collins" asymmetry
- Direct comparison with SIDIS
- Access new quark and gluon TMDs
- Boer-Mulders, Warm-Gear etc
- Requires new experimental capabilities
- Full jet, forward rapidity
- Drell-Yan and other probes possible
- Recent revolution in "TMD physics"
- Universal QCD descriptions being developed
- EIC physics focus
- Unique opportunity, discovery physics!
- Harvest early investment with moderate detector upgrade (also EIC ready)
- Critical for EIC physics interpretation

Backup Slides

Jet "Sivers" and "Collins" Measurements
 A Proposed EIC Detector, eta $=\{-1,+4\}$

- Jet "Sivers" Asymmetry

Jet Kinematic:
$\mathrm{X}=0.1$ ~ 0.6
$Q^{2}=16$ ~ 1000
Huge statistics for precision

Gluons are Important at Large x Too! incoming parton flavors

- CTEQ 10, NLO
$-Q^{\wedge} 2=10 \mathrm{GeV}^{\wedge} 2$

There are a lot of gluons at X1 > 0.1

Access gluon TMDs in $p+p$ in leading order processes

Forward jets: x1 >> x2

$$
\begin{aligned}
& u(x 1)+g(x 2) \text {-> jets } \\
& g(x 1)+g(x 2) \text {-> jets } \\
& d(x 1)+g(x 2)->\text { jets } \\
& \\
& g(x 1)+q _s e a(x 2) \text {-> jets } \\
& q(x 1)+q _s e a(x 2) \text {-> jets }
\end{aligned}
$$

Target fragmentation region and fracture functions

Λ production in the target fragmentation region

Λ - unique tool for polarization study due to self-analyzing parity violating decay

$$
\frac{d N}{d \cos \theta_{p}^{*}} \propto 1+\alpha P_{\Lambda} \cos \theta_{p}^{*}
$$

$A_{L U L}^{T F R}=h S_{\|} \frac{y\left(1-\frac{y}{2}\right) \sum_{a} e_{a}^{2} \Delta M^{L}}{\left(1-y+\frac{y^{2}}{2}\right) \sum_{a} e_{a}^{2} M}$
polarization tranfer coefficient

$$
D^{L L}=\frac{\sum_{a} e_{a}^{2} \Delta M^{L}}{\sum_{a} e_{a}^{2} M}
$$

30 days of CLAS12
data taking

Projected results of the longitudinal spin transfer as a function of \mathbf{x}_{F} (red full circles) compared with the CLAS preliminary data and the ISM prediction

Back-to-back hadron (b2b) production in SIDIS

$$
\begin{aligned}
\mathcal{A}_{L U} & =-\frac{y\left(1-\frac{y}{2}\right)}{\left(1-y+\frac{y^{2}}{2}\right)} \frac{\mathcal{F}_{L U}^{\sin \Delta \phi}}{\mathcal{F}_{U U}} \sin \Delta \phi \\
& =-\frac{\left|\boldsymbol{P}_{1 \perp} \| \boldsymbol{P}_{2 \perp}\right|}{m_{N} m_{2}} \frac{y\left(1-\frac{y}{2}\right)}{\left(1-y+\frac{y^{2}}{2}\right)} \frac{C}{}\left[\omega_{5} M_{L}^{\perp, h} D_{1}\right] \\
\mathcal{C}\left[M D_{1}\right] & \sin \Delta \phi
\end{aligned}
$$

M. Anselmino, V. Barone and A. Kotzinian, Physics Letters B 713 (2012)
$=\frac{\left|\vec{P}_{1 \perp} \vec{P}_{2 \perp}\right|}{m_{N} m_{2}} \mathcal{C}\left[w_{5} M_{L}^{\perp, h} D_{1}\right]$

	U	L	T
U	M	$M_{L}^{\perp, h}$	M_{T}^{h}, M_{T}^{\perp}
L	$\Delta M^{\perp, h}$	ΔM_{L}	$\Delta M_{T}^{h}, M_{T}^{\perp}$
T	$\Delta_{T} M_{T}^{h}, \Delta_{T} M_{T}^{\perp}$	$\Delta_{T} M_{L}^{h}$	$\Delta_{T} M_{T}, \Delta_{T} M_{T}^{h h}$
		$\Delta_{T} M_{L}^{\perp}$	$\Delta_{T} M_{T}^{\perp \perp}, \Delta_{T} M_{T}^{\perp h}$

The beam-spin asymmetry appears, at leading twist and low transverse momenta, in the deep inelastic inclusive leptoproduction of two hadrons, one in the target fragmentation region and one in the current fragmentation region.

Back-to-back hadron production in SIDIS would allow:

- study SSAs not accessible in SIDIS at leading twist
- measure fracture functions
- control the flavor content of the final state hadron in current fragmentation (detecting the target hadron)
- study correlations in target vs current and access factorization breaking effects (similar to pp case)
- access quark short-range correlations and χ SB (Schweitzer et al)

Support slides....

Alu in b2b SIDIS with CLAS @ 5.5 GeV

Preliminary results for a significant ALU asymmetry from CLAS with π^{+}produced in CFR and $\pi^{-}-$in TFR.

Λ production in the target fragmentation region

Most of the direct Lambdas in the target fragmenatation region

correlations between target and current

Wide kinematic coverage of large acceptance detectors allows studies of hadronization both in the target and current fragmentation regions

Sivers effect in the target fragmentation

High statistics of CLAS12 will allow studies of kinematic dependences of the Sivers effect in target fragmentation region

Tensor Spin Observables

Tensor Spin Observables

Property of spin-1 nuclei
Vector $P_{z}=p_{+}-p_{-}$

Tensor Spin Observables

Property of spin-1 nuclei
Vector $P_{z}=p_{+}-p_{-}$

Tensor $P_{z z}=\left(p_{+}+p_{-}\right)-2 p_{0}$
$(1+1)-2$

Tensor Spin Observables

Property of spin-1 nuclei
Vector $P_{z}=p_{+}-p_{-}$

Tensor $P_{z Z}=\left(p_{+}+p_{-}\right)-2 p_{0}$

Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear
physics

Tensor Spin Observables

Property of spin-1 nuclei
Vector $P_{z}=p_{+}-p_{-}$

Tensor $P_{z z}=\left(p_{+}+p_{-}\right)-2 p_{0}$

Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

Of all tensor observables, currently only elastic t_{20} is well measured ${ }^{[1]}$

Tensor Spin Observables

Property of spin-1 nuclei
Vector $P_{z}=p_{+}-p_{-}$

Tensor $P_{z z}=\left(p_{+}+p_{-}\right)-2 p_{0}$

Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

Of all tensor observables, currently only elastic t_{20} is well measured ${ }^{[1]}$

New tensor structure functions ${ }^{[2]}$

$$
b_{1}, b_{2}, b_{3}, b_{4}
$$

Tensor Spin Observables

Property of spin-1 nuclei

$$
\text { Vector } P_{z}=p_{+}-p_{-}
$$

Tensor $P_{Z z}=\left(p_{+}+p_{-}\right)-2 p_{0}$

Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

Of all tensor observables, currently only elastic t_{20} is well measured ${ }^{[1]}$

New tensor structure functions ${ }^{[2]}$

$$
\begin{gathered}
b_{1}, b_{2}, b_{3}, b_{4} \\
b_{1}=\frac{q^{0}(x)-q^{ \pm}(x)}{2}
\end{gathered}
$$

Tensor Spin Observables

Property of spin-1 nuclei

$$
\text { Vector } P_{z}=p_{+}-p_{-}
$$

Tensor $P_{z z}=\left(p_{+}+p_{-}\right)-2 p_{0}$

Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

Of all tensor observables, currently only elastic t_{20} is well measured ${ }^{[1]}$

New tensor structure functions ${ }^{[2]}$

$$
\begin{gathered}
b_{1}, b_{2}, b_{3}, b_{4} \\
b_{1}=\frac{q^{0}(x)-q^{ \pm}(x)}{2}
\end{gathered}
$$

b_{1} allows us to quark distributions
dependent on polarization of the nucleus

Tensor Spin Observables

Property of spin-1 nuclei

$$
\text { Vector } P_{z}=p_{+}-p_{-}
$$

Tensor $P_{z z}=\left(p_{+}+p_{-}\right)-2 p_{0}$

New tensor structure functions ${ }^{[2]}$

$$
\begin{gathered}
b_{1}, b_{2}, b_{3}, b_{4} \\
b_{1}=\frac{q^{0}(x)-q^{ \pm}(x)}{2}
\end{gathered}
$$

b_{1} allows us to quark distributions dependent on polarization of the nucleus

($1+6$) 2 -

Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

Of all tensor observables, currently only elastic t_{20} is well measured ${ }^{[1]}$

Tensor Spin Observables

Property of spin-1 nuclei
Vector $P_{z}=p_{+}-p_{-}$

Tensor $P_{Z z}=\left(p_{+}+p_{-}\right)-2 p_{0}$

Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

Of all tensor observables, currently only elastic t_{20} is well measured ${ }^{[1]}$

New tensor structure functions ${ }^{[2]}$

$$
\begin{gathered}
b_{1}, b_{2}, b_{3}, b_{4} \\
b_{1}=\frac{q^{0}(x)-q^{ \pm}(x)}{2}
\end{gathered}
$$

b_{1} allows us to quark distributions dependent on polarization of the nucleus

Conventional nuclear physics models can't reproduce HERMES data

Tensor Structure Function $\boldsymbol{b}_{\mathbf{1}}$

Property of spin-1 nuclei

$$
\text { Vector } P_{z}=p_{+}-p_{-}
$$

Tensor $P_{z z}=\left(p_{+}+p_{-}\right)-2 p_{0}$

Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

Of all tensor observables, currently only elastic t_{20} is well measured ${ }^{[1]}$

New tensor structure functions ${ }^{[2]}$

$$
\begin{gathered}
b_{1}, b_{2}, b_{3}, b_{4} \\
b_{1}=\frac{q^{0}(x)-q^{ \pm}(x)}{2}
\end{gathered}
$$

b_{1} allows us to quark distributions dependent on polarization of the nucleus

Conventional nuclear physics models can't reproduce HERMES data Only introducing hidden color effects has been able to

Tensor Structure Function b_{1}
6-quark hidden color ${ }^{[4]}$

Tensor Spin Observables

Property of spin-1 nuclei

$$
\text { Vector } P_{z}=p_{+}-p_{-}
$$

Tensor $P_{z z}=\left(p_{+}+p_{-}\right)-2 p_{0}$

Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

Of all tensor observables, currently only elastic t_{20} is well measured ${ }^{[1]}$

New tensor structure functions ${ }^{[2]}$

$$
\begin{gathered}
b_{1}, b_{2}, b_{3}, b_{4} \\
b_{1}=\frac{q^{0}(x)-q^{ \pm}(x)}{2}
\end{gathered}
$$

b_{1} allows us to quark distributions dependent on polarization of the nucleus

Conventional nuclear physics models can't reproduce HERMES data Only introducing hidden color effects has been able to

Tensor Structure Function $\boldsymbol{b}_{\mathbf{1}}$
Close-Kumano sum rule ${ }^{[3]}$
6 -quark hidden color ${ }^{[4]}$

${ }^{[4]}$ G Miller, Phys. Rev. C89, 045203 (2014)
${ }^{[5]}$ SK Taneja et al, Phys. Rev. D86, 036008 (2012)
${ }^{[6]}$ S Kumano, Phys. Rev. D82, 017501 (2010)

Property of spin-1 nuclei

$$
\text { Vector } P_{z}=p_{+}-p_{-}
$$

Tensor $P_{z Z}=\left(p_{+}+p_{-}\right)-2 p_{0}$
$(1+i)-2$
Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

Of all tensor observables, currently only elastic t_{20} is well measured ${ }^{[1]}$

New tensor structure functions ${ }^{[2]}$

$$
\begin{gathered}
b_{1}, b_{2}, b_{3}, b_{4} \\
b_{1}=\frac{q^{0}(x)-q^{ \pm}(x)}{2}
\end{gathered}
$$

b_{1} allows us to quark distributions dependent on polarization of the nucleus

Conventional nuclear physics models can't reproduce HERMES data Only introducing hidden color effects has been able to

Tensor Structure Function $\boldsymbol{b}_{\mathbf{1}}$
Close-Kumano sum rule ${ }^{[3]}$
6-quark hidden color ${ }^{[4]}$
OAM and spin crisis ${ }^{[5]}$
Pionic effects ${ }^{[4,6]}$
Polarized sea quarks ${ }^{[6]}$

${ }^{[4]}$ G Miller, Phys. Rev. C89, 045203 (2014)
${ }^{[5]}$ SK Taneja et al, Phys. Rev. D86, 036008 (2012)
${ }^{[6]}$ S Kumano, Phys. Rev. D82, 017501 (2010)

Property of spin-1 nuclei

$$
\text { Vector } P_{z}=p_{+}-p_{-}
$$

Tensor $P_{z Z}=\left(p_{+}+p_{-}\right)-2 p_{0}$
$(1+i)-2$
Development of a high luminosity, high tensor polarized target has promise as novel probe of nuclear physics

Of all tensor observables, currently only elastic t_{20} is well measured ${ }^{[1]}$

New tensor structure functions ${ }^{[2]}$

$$
\begin{gathered}
b_{1}, b_{2}, b_{3}, b_{4} \\
b_{1}=\frac{q^{0}(x)-q^{ \pm}(x)}{2}
\end{gathered}
$$

b_{1} allows us to quark distributions dependent on polarization of the nucleus

Conventional nuclear physics models can't reproduce HERMES data Only introducing hidden color effects has been able to
JLab E12-13-011, A- Rating, C1 Approved Tensor Structure Function \boldsymbol{b}_{1}
Close-Kumano sum rule ${ }^{[3]}$
6-quark hidden color ${ }^{[4]}$
OAM and spin crisis ${ }^{[5]}$
Pionic effects ${ }^{[4,6]}$
Polarized sea quarks ${ }^{[6]}$

Tensor Spin Observables

JLab LOI12-14-002: Tensor Asymmetry

$A_{z z}$ in the $x>1$ Region

Tensor Spin Observables

JLab LOI12-14-002: Tensor Asymmetry

$A_{z z}$ in the $x>1$ Region
Similar to t_{20}, but in QE

Tensor Spin Observables

JLab LOI12-14-002: Tensor Asymmetry

$A_{z z}$ in the $x>1$ Region
Similar to t_{20}, but in QE
SRCs \& pn dominance ${ }^{[1]}$
Differentiate light cone and VN models ${ }^{[2]}$

${ }^{[1]}$ J Arrington et al, Prog. Part. Nucl. Phys. 67, 898 (2012)
${ }^{[2]}$ M. Sargsian, private communication

Tensor Spin Observables

JLab LOI12-14-002: Tensor Asymmetry

$A_{z z}$ in the $x>1$ Region
Similar to t_{20}, but in QE
SRCs \& pn dominance ${ }^{[1]}$
Differentiate light cone and VN models ${ }^{[2]}$
Better understanding of $\mathrm{s} / \mathrm{d}^{[3]}$

$$
A_{z z} \propto \frac{\frac{1}{2} d^{2}-s d}{s^{2}+d^{2}}
$$

${ }^{[1]}$ J Arrington et al, Prog. Part. Nucl. Phys. 67, 898 (2012)
${ }^{[2]}$ M. Sargsian, private communication
${ }^{[3]}$ L Frankfurt, M Strikman, Phys. Rept. 160, 235

Tensor Spin Observables

JLab LOI12-14-002: Tensor Asymmetry

$A_{z z}$ in the $x>1$ Region
Similar to t_{20}, but in QE
SRCs \& pn dominance ${ }^{[1]}$
Differentiate light cone and VN models ${ }^{[2]}$
Better understanding of $\mathrm{s} / \mathrm{d}^{[3]}$
Final state interaction models ${ }^{[4]}$

$$
A_{z z} \propto \frac{\frac{1}{2} d^{2}-s d}{s^{2}+d^{2}}
$$

${ }^{[1]}$ J Arrington et al, Prog. Part. Nucl. Phys. 67, 898 (2012)
${ }^{[2]}$ M. Sargsian, private communication
${ }^{[3]}$ L Frankfurt, M Strikman, Phys. Rept. 160, 235
${ }^{[4]}$ W Cosyn, M Sargsian, arXiv:1407.1653

Tensor Spin Observables

JLab LOI12-14-002: Tensor Asymmetry
$A_{z z}$ in the $x>1$ Region
Similar to t_{20}, but in QE
SRCs \& pn dominance ${ }^{[1]}$
Differentiate light cone and VN models ${ }^{[2]}$
Better understanding of $s / d^{[3]}$
Final state interaction models ${ }^{[4]}$
Encouraged for full submission by PAC42

$$
A_{z z} \propto \frac{\frac{1}{2} d^{2}-s d}{s^{2}+d^{2}}
$$

"The measurement proposed here arises from a well-developed context, presents a clear objective, and enjoys strong theory support. It would further explore the nature of short-range pn correlations in nuclei, the discovery of which has been one of the most important results of the JLab 6 GeV nuclear program." -JLab PAC42 Theory Advisory Committee
${ }^{[1]}$ J Arrington et al, Prog. Part. Nucl. Phys. 67, 898 (2012)
${ }^{[2]}$ M. Sargsian, private communication
${ }^{[3]}$ L Frankfurt, M Strikman, Phys. Rept. 160, 235
${ }^{[4]}$ W Cosyn, M Sargsian, arXiv:1407.1653

Tensor Spin Observables

JLab LOI12-14-002: Tensor Asymmetry
$A_{z z}$ in the $x>1$ Region
Similar to t_{20}, but in QE
SRCs \& pn dominance ${ }^{[1]}$
Differentiate light cone and VN models ${ }^{[2]}$
Better understanding of $\mathrm{s} / \mathrm{d}^{[3]}$
Final state interaction models ${ }^{[4]}$
Encouraged for full submission by PAC42

$$
A_{z z} \propto \frac{\frac{1}{2} d^{2}-s d}{s^{2}+d^{2}}
$$

"The measurement proposed here arises from a well-developed context, presents a clear objective, and enjoys strong theory support. It would further explore the nature of short-range pn correlations in nuclei, the discovery of which has been one of the most important results of the JLab 6 GeV nuclear program." -JLab PAC42 Theory Advisory Committee

JLab LOI12-14-001: Search for Exotic

Gluonic States in the Nucleus

b_{4} in $x<0.3$ region
Insensitive to bound nucleons or pions ${ }^{[5]}$
Any non-zero value indicates exotic
gluonic components ${ }^{[5]}$
Encouraged for full submission by PAC42
${ }^{[1]}$ J Arrington et al, Prog. Part. Nucl. Phys. 67, 898 (2012)
${ }^{[2]}$ M. Sargsian, private communication
${ }^{[3]}$ L Frankfurt, M Strikman, Phys. Rept. 160, 235
${ }^{[4]}$ W Cosyn, M Sargsian, arXiv:1407.1653
${ }^{[5]}$ R Jaffe, A Manohar, Phys. Lett. B223, 218 (1989)

Tensor Spin Observables

JLab LOI12-14-002: Tensor Asymmetry
$A_{z z}$ in the $x>1$ Region
Similar to t_{20}, but in QE SRCs \& pn dominance ${ }^{[1]}$
Differentiate light cone and VN models ${ }^{[2]}$
Better understanding of $\mathrm{s} / \mathrm{d}^{[3]}$
Final state interaction models ${ }^{[4]}$
Encouraged for full submission by PAC42

$$
A_{z z} \propto \frac{\frac{1}{2} d^{2}-s d}{s^{2}+d^{2}}
$$

"The measurement proposed here arises from a well-developed context, presents a clear objective, and enjoys strong theory support. It would further explore the nature of short-range pn correlations in nuclei, the discovery of which has been one of the most important results of the JLab 6 GeV nuclear program."
-JLab PAC42 Theory Advisory Committee
JLab LOI12-14-001: Search for Exotic Gluonic States in the Nucleus
b_{4} in $x<0.3$ region
Insensitive to bound nucleons or pions ${ }^{[5]}$
Any non-zero value indicates exotic
gluonic components ${ }^{[5]}$
Encouraged for full submission by PAC42

[^0]
Tensor Spin Observables

JLab LOI12-14-002: Tensor Asymmetry
$A_{z z}$ in the $x>1$ Region
Similar to t_{20}, but in QE
SRCs \& pn dominance ${ }^{[1]}$
Differentiate light cone and VN models ${ }^{[2]}$
Better understanding of $\mathrm{s} / \mathrm{d}^{[3]}$
Final state interaction models ${ }^{[4]}$
Encouraged for full submission by PAC42

$$
A_{z z} \propto \frac{\frac{1}{2} d^{2}-s d}{s^{2}+d^{2}}
$$

"The measurement proposed here arises from a well-developed context, presents a clear objective, and enjoys strong theory support. It would further explore the nature of short-range pn correlations in nuclei, the discovery of which has been one of the most important results of the JLab 6 GeV nuclear program."
-JLab PAC42 Theory Advisory Committee
JLab LOI12-14-001: Search for Exotic Gluonic States in the Nucleus
b_{4} in $x<0.3$ region
Insensitive to bound nucleons or pions ${ }^{[5]}$
Any non-zero value indicates exotic gluonic components ${ }^{[5]}$
Encouraged for full submission by PAC42

[^1]Future of Tensor Measurements Approved measurement of b_{1} 2 upcoming proposals
4 structure functions to explore Many more ideas from Tensor Workshop Ample opportunities for exploration

Ideas to probe novel nuclear effects through tensor structure are growing rapidly. It is paramount that a high luminosity, high tensor polarization target be developed to make these experiments possible

PVDIS with SoLID

$$
\begin{array}{rlrl}
A_{\mathrm{PV}} & =\frac{\sigma^{l}-\sigma^{r}}{\sigma^{l}+\sigma^{r}} \approx \frac{\mathcal{M}_{Z^{0}}^{l}-\mathcal{M}_{Z^{0}}^{r}}{\mathcal{M}_{\gamma}} / \begin{array}{l}
\text { Involves both EW coupling } \\
\text { and QCD Physics }
\end{array} \\
& \propto-\left(\frac{G_{\mathrm{F}} Q^{2}}{4 \pi \alpha}\right)\left(g_{A}^{e} g_{V}^{T}+\beta g_{V}^{e} g_{A}^{T}\right) & A_{p \nu}=\frac{G_{r} Q^{2}}{\sqrt{2} \pi \alpha}[\mathbf{a}(x)+Y(y) \mathbf{b}(x)]
\end{array}
$$

New Physics

SoLID projection

$$
b(x)=\frac{\sum_{i} \boldsymbol{C}_{2 i} Q_{i} f_{i}^{-}(x)}{\sum_{i} Q_{i}^{2} f_{i}^{+}(x)}
$$

PVDIS is the only way to measure the small $\mathrm{C}_{2 q}$

$$
\left[2 g^{\mathrm{ou}-}-g^{\mathrm{ed}}\right]_{\mathrm{AV}}
$$

QCD Physics with different targets

CSV at Quark Level
$\delta u(x)=u^{p}(x)-d^{n}(x)$
$\delta d(x)=d^{p}(x)-u^{n}(x)$
$R_{C S V}=\frac{\delta A_{P V}(x)}{A_{P V}(x)}=0.28 \frac{\delta u(x)-\delta d(x)}{u(x)+d(x)}$
$\left\{\begin{array}{r}{ }^{2} \mathrm{H} \text { (isoscalar) } \\ a(x)=\frac{\sum_{i} \mathrm{C}_{1 i} Q_{i} f_{i}^{+}(x)}{\sum_{i} Q_{i}^{2} f_{i}^{+}(x)}\end{array}\right.$

Di-quarks in the nucleon (Q^{2} Dependence)

Explain NuTeV??
Isovector EMC effect

Backup

$$
A=A\left[1+\beta_{H T} \frac{1}{(1-x)^{3} Q^{2}}+\beta_{C S V} x^{2}\right]
$$

$e p \rightarrow e p \pi^{0}:$ access to chiral-odd GPDs

$$
\begin{array}{ll}
\sigma_{T} \sim\left(1-\xi^{2}\right)\left|\left\langle H_{T}\right\rangle\right|^{2}-\frac{t^{\prime}}{8 m^{2}}\left|\left\langle\bar{E}_{T}\right\rangle\right|^{2} & A_{L U}^{\sin \phi} \sigma_{0} \sim \operatorname{Im}\left[\left\langle H_{T}\right\rangle^{*}\langle\tilde{E}\rangle\right] \\
\sigma_{T T} \sim \frac{t^{\prime}}{8 m^{2}}\left|\left\langle\bar{E}_{T}\right\rangle\right|^{2} & A_{L L}^{c o n s t} \sigma_{0} \sim\left|\left\langle H_{T}\right\rangle\right|^{2}
\end{array}
$$

* Unpolarized Structure Functions
I. Bedlinskiy et al. (CLAS collaboration) PRL109: 112001 (2012) The curves represent the calculations
from theoretical models with inclusion of chiral odd GPDs.

Dominated by transverse virtual photons contribution
\Downarrow
Unique sensitivity
for constraining the chiral-odd GPDs

Beam Spin Asymmetries
R. De Masi et al. (CLAS collaboration) PRC77: 042201 (2008)

- Target and Double Spin Asymmetries

12 GeV Upgrade and Variety of Pseudoscalar Meson Production

Quark flavor decomposition:

$$
\begin{array}{ll}
F_{i}^{\pi^{0}}=\frac{\left(e_{u} F_{i}^{u}-e_{d} F_{i}^{d}\right)}{\sqrt{2}} & F_{i p \rightarrow \Lambda}=-\frac{\left(2 F_{i}^{u}-F_{i}^{d}\right)}{\sqrt{6}} \\
F_{i}^{\eta}=\frac{\left(e_{u} F_{i}^{u}+e_{d} F_{i}^{d}\right)}{\sqrt{6}} & F_{i p \rightarrow \Sigma^{0}}=-\frac{F_{i}^{d}}{\sqrt{2}}
\end{array}
$$

Flavor ratios: cancellation of higher twist effects $\pi / \eta, \ldots$

The combination of high beam intensity with large acceptance detectors allows for precise measurements of "rare" processes such as deep exclusive reactions: CLAS12 is uniquely suited for simultaneous detection of various DVMP channels

Expansion of the kinematic coverage provides the opportunity to test the mechanism of pseudoscalar meson electroproduction in great details and perform the separation of the contributions from the different chiral-odd GPDs

Projections for GPD H with CLAS12

Count rates projections for 12 GeV unpolarized long. and transv. polarized targets
$\Downarrow_{\text {Acceptance, Binning, Resolutions }}$
Observables, Uncertainties
$\sigma, A_{\mathrm{LU}}, A_{\mathrm{LL}}, A_{\mathrm{UT}} \cdots$
$\Downarrow_{\text {Extraction procedures }}$
Generalized Parton
Distributions
H, \tilde{H}, E, \tilde{E}
$\Downarrow_{\text {Fourier Transform }}$
Quark densities $q\left(x_{B}, p_{\perp}\right)$ Angular Momentum Sum Rule related to E

Projections for GPD E with CLAS12

Count rates
projections for 12 GeV unpolarized long. and transv.
polarized targets
$\Downarrow_{\text {Acceptance, Binning, Resolutions }}$ Observables, Uncertainties $\sigma, A_{\mathrm{LU}}, A_{\mathrm{LL}}, A_{\mathrm{UT}} \cdots$
$\Downarrow_{\text {Extraction procedures }}$
Generalized Parton
Distributions
H, \tilde{H}, E, \tilde{E}
$\|_{\text {Fourier Transform }}$
Quark densities $q_{\perp}\left(x_{B}, p_{\perp}\right)$
Angular Momentum Sum Rule related to E

Projections for quark transverse profile

H_{5} and E contribution, slight offset due to E

Projections for quark transverse profile

E contribution only, amplitude $\propto E$

Future prospects of di-jet production at

 forward rapidity constraining $\Delta g(x)$ at low x in polarized p+p collisions at RHIC
Results / Status - Gluon polarization program

- Impact on Δg from RHIC data

O DSSV*: New COMPASS inclusive and semi-inclusive results in addition to Run 5/6 RHIC updates

0 DSSV - NEW FIT: Strong impact on $\Delta g(x)$ with RHIC run 9 results \Rightarrow Positive for $x>0.05$!
"...better small-x probes are badly needed."

Results / Status - Gluon polarization program

- RHIC Gluon polarization - Correlation Measurements

O Correlation measurements provide access to partonic kinematics through Di-Jet/Hadron production and Photon-Jet production:

$$
x_{1(2)}=\frac{1}{\sqrt{s}}\left(p_{T_{3}} e^{\eta_{3}\left(-\eta_{3}\right)}+p_{T_{4}} e^{\eta_{4}\left(-\eta_{4}\right)}\right)
$$

O Bjorken x-coverage:

Di-Jet production

$$
\begin{aligned}
& \eta_{3}+\eta_{4}=\ln \frac{x_{1}}{x_{2}} \\
& M=\sqrt{s} \sqrt{x_{1} x_{2}}
\end{aligned}
$$

- Kinematic coverage - Simulations / Central

Cone alg. (R=0.7)/ $\mathrm{E}_{\mathrm{T} 3}>5 \mathrm{GeV} \quad \mathrm{E}_{\mathrm{T} 4}>8 \mathrm{GeV}$

Future prospects - Gluon polarization program

- ALL projections / Central

Cone alg. $(\mathrm{R}=0.7) / \mathrm{E}_{\mathrm{T} 3}>5 \mathrm{GeV} \mathrm{E}_{\mathrm{T} 4}>8 \mathrm{GeV}$

Delivered Luminosity $=1000 \mathrm{pb}^{-1}$
Polarization $=60 \%$

Future prospects - Gluon polarization program

- Kinematic coverage - Simulations / Forward

Cone alg. (R=0.7)/ $\mathrm{E}_{\mathrm{T} 3}>5 \mathrm{GeV} \mathrm{E}_{\mathrm{T} 4}>8 \mathrm{GeV}$

Future prospects - Gluon polarization program

ㅁ ALL projections / Forward

Delivered Luminosity $=1000 \mathrm{pb}^{-1}$
Polarization $=60 \%$

Summary

- Status: Gluon polarization program:
- First Di-Jet measurement opens the path to constrain the shape of Δg
- Run 9 results: Precise ALL measurement suggesting non-zero ΔG
- New global analysis by DSSV:

O Non-zero $\Delta g(x)$ for $x>0.05$
O Larger uncertainties for $x<0.05$, i.e. below current RHIC kinematic region!

- Run 14 STAR BUR request:

LOI for forward STAR upgrade focusing on forward pp/pA
program

O 6 weeks with $L_{\text {delivered }}=75 \mathrm{pb}^{-1}$ and 60%

- Forward jet production:

O Extend jet measurements at forward rapidity probing $\Delta g(x)$ as low as 10^{-3} in x
O Good control of sys. uncertainties important (Assume ~ 1 long RHIC run!)
O Additional probes to be studied: π^{0}-jet correlations!
O Important step prior to a future Electron-Ion Collider (EIC) ~2025!

[^0]: ${ }^{[1]}$ J Arrington et al, Prog. Part. Nucl. Phys. 67, 898 (2012)
 ${ }^{[2]}$ M. Sargsian, private communication
 ${ }^{[3]}$ L Frankfurt, M Strikman, Phys. Rept. 160, 235
 ${ }^{[4]}$ W Cosyn, M Sargsian, arXiv:1407.1653
 ${ }^{[5]}$ R Jaffe, A Manohar, Phys. Lett. B223, 218 (1989)

[^1]: ${ }^{[1]}$ J Arrington et al, Prog. Part. Nucl. Phys. 67, 898 (2012)
 ${ }^{[2]}$ M. Sargsian, private communication
 [3] L Frankfurt, M Strikman, Phys. Rept. 160, 235
 ${ }^{[4]}$ W Cosyn, M Sargsian, arXiv:1407.1653
 ${ }^{[5]}$ R Jaffe, A Manohar, Phys. Lett. B223, 218 (1989)

