Baryon Spectroscopy with Photoproduction of Mesons at MAMI - Mainz

٧

N(p,n

pγ

linearly and circularly polarized photons Polarized protons, deuterons, ³He

All combinations of beam and target polarization possible!

$$\begin{aligned} \frac{d\sigma}{d\Omega} &= \frac{d\sigma_0}{d\Omega} \{ 1 - P_l \Sigma \cos(2\phi) + P_x \left[-P_l H \sin(2\phi) + P_c F \right] \\ &- P_y \left[-T + P_l P \cos(2\phi) \right] \\ &- P_z \left[-P_l G \sin(2\phi) + P_c E \right] \end{aligned}$$

Model independent multipole analysis requires measurement of:

4 single polarization observables (σ, Σ, T, P)

4 carefully chosen double polarization observables

Chiang & Tabakin PRC 55 (1997)

$\gamma n ightarrow n\eta$ - excitations functions for different angular bins

(D. Werthmüller and L. Witthauer et al.)

deuteron target

³He target

[-0.80,-0.60]

[-0.40.-0.20]

[0.00,0.20]

[0.40.0.60]

[0.80,1.00]

total func.
 signal BW
 all BG

BG_ccontri

data

1500 1600 1700 1800 1900

Exploraration of polarization observables (beam, target, recoil) to establish a data base allowing almost model independent analyses.

Investigation of different final states including multi-meson production so that coupled-channel analyses can identify excited states decoupled from dominant decays like π^0 emission to the nucleon ground-state.

Investigation of reactions off quasi-free neutrons to establish also the photocouplings for neutron resonances.

analysis of polarization observables E, T, F under way

Why We Need Meson Beams

Bill Briscoe, Michael Döring, Helmut Haberzettl, Mark Manley, Megumi Naruki, <mark>Igor Strakovsky</mark>, Eric Swanson

 Reliable theoretical and phenomenological analyses need hadron-induced measurements such as
 πN→πN, ηN, KΛ, KΣ, and
 KN→KN, πΛ, πΣ, ηΛ, ηΣ, and also multi-meson final states.

- Measurements with pion and Kaon beams make possible studies of baryon and meson spectroscopy that are complementary to programs underway worldwide at major EM facilities such as JLab, Mainz, SPring-8, Bonn, and elsewhere.
- The **key** instrument is a **coupled-channel** analysis that requires precise data for several channels at many energies and angles.

Joint QCD Town Meeting, Philadelphia, PA, Sept 2014

$\pi^- p \rightarrow \eta n$ • $\gamma p \rightarrow \eta p$ is one of the **key reactions** for which colleagues in the **EM** community hope to do a ``*complete measurement*".

- Any **coupled-channel analysis** of those measurements will need precise data for $\pi \mathbf{p} \rightarrow \eta \mathbf{n}$.
- Most of the available data for that reaction come from measurements published in the 1970s, which have been evaluated by several groups as being unreliable above 1620 MeV.
- Precise new data were measured by the Crystal Ball Collaboration (Prakhov 2005), but these extend only up to the peak of the first S₁₁-resonance.

• Very few polarization data for these reactions exist.

• Available data for $\pi^- p$ reactions with KY, $\eta' N$, ωN , and ϕN final states are generally as **bad** or **worse**.

- IPE is the only process that allows the determination of EM nucleon and pion form-factors in the intervals: 0 < k² < 4 M² = 3.53 GeV² 0 < k² < 4 m_π² = 0.08 GeV² which are kinematically unattainable from e⁺e⁻ initial state.
- IPE measurements will significantly complement **electroproduction** $\gamma^* N \rightarrow \pi N$ studies.

- For most established N and Δ resonances, their dominant inelastic decays are to ππN final states. A large experimental database (including pol measurements) is needed to determine precisely the PW amplitudes because so many amplitudes are needed to describe three-body final states.
- 241,214 <u>Bubble Chamber</u> events for $\pi N \rightarrow \pi \pi N$ have been analyzed in Isobar-model PWA at W = 1320 to 1930 MeV [Manley, Arndt *et al* Phys Rev D 30, 904 (1984)].
- This **30**-yr old result remains the main source of our knowledge about $\pi N \rightarrow \pi \pi N$.

• The Hadronic Complex can longer keep the JLab <u>MEIC</u> pre-Booster and Linac busy [to use more than ``several minutes" a day], which would be much more effective use of the <u>MEIC</u> facility.

Hadron Spectroscopy at FIU: Some New Opportunities

Lei Guo

Florida International University, Miami, FL

Polarization Observable: $\gamma p \rightarrow K^+ K^- p \text{ and } \gamma p \rightarrow K^+ K^+ \Xi^-$

1.0

0.5 **A** 0.0

-0.5

-1.00.5

0.0

-0.5

-1.0

0.3

0.2

0.1

-0.1

-0.2

-0.3

term

1.6

1.8

1.9

2

2.1

1.5

2.2

M(pK)

0.0

 $\cos(\theta_{\pi})$

0.5

1.0

 $\gamma p --> K^{+} K^{+} \Xi^{-}$

Polarization observables are essential in understanding the production mechanisms 3

The Need to Extend the Studies of N* Structure

Studies of N*-electrocouplings over a broad range of photon virtuality Q² offer unique information on the non-perturbative strong interaction that determines the structure of different excited nucleons.

Insight on N* structure from the CLAS@JLAB data on exclusive meson electroproduction (Review papers: I.G. Aznauryan & V.D. Burkert, Progr. Part. Nucl. Phys. 67 (2012) 1; I.G.Aznauryan et al., Int. J. Mod. Phys. E22 (2013) 1330015).

• Growth of relative quark core contribution with Q² in gradual transition to <u>almost unexplored domain</u> <u>of quark core dominance at Q²>5.0 GeV².</u>

Jefferson Pab

V.I.Mokeev, Joint Town Meeting on QCD, Temple University, September 13-15, 2014

N^{*} Structure at High Photon Virtualities in Exploration of Strong Interaction

CLAS12 is the only facility foreseen in the world capable of determining electrocouplings of all prominent N* at 5<Q²<12 GeV². For the first time, almost direct access to the quark core at the distances where the transition from quark-gluon confinement to perturbative QCD regime is expected.

Studies of Nucleon Resonance Structure from the exclusive meson electroproduction experiments with CLAS12@JLAB offer an important contribution to the Long Range Plan.

Jefferson Pab

V.I.Mokeev, Joint Town Meeting on QCD, Temple University, September 13-15, 2014

(quark core & M B cloud)

1. XYZ "States" in Charmonium and Bottomonium

A. Charmonium and bottomonium are simple quark-antiquark bound states in which both potential models and QCD calculations work remarkably well below open-flavor threshold.

B. Experiment indicates a variety of phenomena above open-flavor threshold (the "XYZ") in which this simple quark-antiquark picture breaks down.

C. This is a prime opportunity to study meson spectroscopy, meson-meson interactions, and QCD in general in a region that is still simple, but beyond quark-antiquark dynamics.

2. The Status of Experiment (by example)

3. The Outlook for Experiment

A. To progress, Belle, BaBar, BESIII, LHCb, etc. will keep adding pieces to the puzzle.

B. Two experiments are especially unique and timely:

B1. Belle-II

<u>facts</u>	bro
KEK, Tsukuba, Japan	bo
e+e- in bottomonium	ISI
50× data of Belle	cha
start date in 2018	

B2. **BESIII**

broad QCD topics bottomonium ISR to charmonium charmonium in bottomonium and B decays

<u>facts</u> IHEP, Beijing, China e⁺e⁻ in charmonium running since 2009 10 more years?

broad QCD topics

charmonium ISR to light quarks light quarks in charmonium and D decays

C. The puzzle of the XYZ's seems imminently solvable, which would push QCD studies of mesons beyond quark-antiquark dynamics.

D. These efforts will provide critical input to similar programs in the light quark sector (e.g. GlueX at JLab).

Support Amplitude Analysis !

Global effort JLab/IU/GWU Physics Analysis Center Physics of interest: form factors, GPD's, resonance parameters, etc. resides outside experimentally accessible range of kinematic variables.

