Baryon Spectroscopy with Photoproduction of Mesons at MAMI - Mainz

Mainz MAMI accelerator: $\mathrm{E}<1.6 \mathrm{GeV}$

Crystal Ball (NaI), TAPS (BaF_{2}) forward wall, inner detectors
linearly and circularly polarized photons Polarized protons, deuterons, ${ }^{3} \mathrm{He}$

Crystal Ball

photon	target polarization			
polarization	-	\times	y	z
unpolarized	σ			
linearly		H	P	
circularly		F		

Crystal Ball

All combinations of beam and target polarization possible!

$$
\begin{aligned}
\frac{d \sigma}{d \Omega}=\frac{d \sigma_{0}}{d \Omega}\left\{1-P_{l} \Sigma \cos (2 \phi)\right. & +P_{x}\left[-P_{l} H \sin (2 \phi)+P_{c} F\right] \\
& -P_{y}\left[-T+P_{l} P \cos (2 \phi)\right] \\
& \left.-P_{z}\left[-P_{l} G \sin (2 \phi)+P_{c} E\right]\right\}
\end{aligned}
$$

Model independent multipole analysis requires measurement of:
4 single polarization 4 carefully chosen double observables (σ, Σ, T, P)
polarization observables

$\gamma n \rightarrow n \eta$ - excitations functions for different angular bins

(D. Werthmüller and L. Witthauer et al.)

- deuteron target

- ${ }^{3} \mathrm{He}$ target

Exploraration of polarization observables (beam, target, recoil) to establish a data base allowing almost model independent analyses.

Investigation of different final states including multi-meson production so that coupled-channel analyses can identify excited states decoupled from dominant decays like π^{0} emission to the nucleon ground-state.

Investigation of reactions off quasi-free neutrons to establish also the photocouplings for neutron resonances.

- analysis of polarization observables E, T, F under way

Why We FVeed Meson Beams

Bill Briscoo, Michael Döring, Helmut Haberzettl,

 Mark $\mathcal{M a n l e y}$, Megumi $\mathcal{N a}$ aruki, Igor Strakovsky, Eric Swanson

White Paper in progress

- Reliable theoretical and phenomenological analyses need hadron-induced measurements such as

$$
\begin{aligned}
& \pi N \rightarrow \pi N, \eta N, K \Lambda, K \Sigma \text {, and } \\
& K N \rightarrow K N, \pi \Lambda, \pi \Sigma, \eta \Lambda, \eta \Sigma \text {, and also multi-meson final states. }
\end{aligned}
$$

- Measurements with pion and Kaon beams make possible studies of baryon and meson spectroscopy that are complementary to programs underway worldwide at major EM facilities such as JLab, Mainz, SPring-8, Bonn, and elsewhere.

- The key instrument is a coupled-channel analysis that requires precise data for several channels at many energies and angles.
$\bullet \gamma p \rightarrow \eta p$ is one of the key reactions for which colleagues in the EM community hope to do a "complete measurement". Any coupled-channel analysis of those measurements will need precise data for $\pi p \rightarrow \eta n$. - Most of the available data for that reaction come from measurements published in the 1970s, which have been evaluated by several groups as being unreliable above 1620 MeV .
- Precise new data were measured by the Crystal Ball Collaboration (Prakhov 2005), but these extend only up to the peak of the first S_{11}-resonance.

- Very few polarization data for these reactions exist.

- Available data for $\pi^{-} p$ reactions with $\mathrm{KY}, \eta^{\prime} \mathbf{N}, \omega \mathbf{N}$, and $\phi \mathrm{N}$ final states are generally as bad or worse.

- IPE is the only process that allows the determination of EM nucleon and pion form-factors in the intervals: $0<\mathrm{k}^{2}<4 \mathrm{M}^{2}=3.53 \mathrm{GeV}^{2} 0<\mathrm{k}^{2}<4 \mathrm{~m}_{\pi}{ }^{2}=0.08 \mathrm{GeV}^{2}$ which are kinematically unattainable from $\mathrm{e}^{+} \mathrm{e}^{-}$initial state.
- IPE measurements will significantly complement electroproduction $\gamma^{*} \mathrm{~N} \rightarrow \pi \mathrm{~N}$ studies.
- For most established N and Δ resonances, their dominant inelastic decays are to $\pi \pi N$ final states. A large experimental database (including pol measurements) is needed to determine precisely the PW amplitudes because so many amplitudes are needed to describe three-body final states.
- 241,214 Bubble Chamber events for $\pi \mathrm{N} \rightarrow \pi \pi \mathrm{N}$ have been analyzed in Isobar-model PWA at $\mathrm{W}=\mathbf{1 3 2 0}$ to $\mathbf{1 9 3 0} \mathrm{MeV}$ [Manley, Arndt et al Phys Rev D 30, 904 (1984)] .
- This $\mathbf{3 0}$-yr old result remains the main source of our knowledge about $\pi \mathrm{N} \rightarrow \pi \pi \mathrm{N}$.
- The Hadronic Complex can longer keep the JLab MEIC pre-Booster and Linac busy [to use more than "several minutes" a day], which would be much more effective use of the MEIC facility.

Hadron Spectroscopy at FIU: Some New Opportunities

Lei Guo

Florida International University,
Miami, FL

Searching for Missing States

Exotic Meson/Baryon-Antibaryon/Cascades

- $\pi_{1}(1600)$ remain the strongest evidence
- Recent COMPASS results - GlueX: E. Pooser, Thesis (2015)

GlueX/CLAS12 expect unprecedented statistics for $\Xi *$ and Y^{*}

- Exclusive reactions
- PWA/DMA feasible: J ${ }^{\mathrm{P}}$
- Comparison with QM/Lattice
- Many predicted states; Most "missing"

- Typically narrower

- High mass mesons $>2 \mathrm{GeV}$ decaying to $N \bar{N}$
- Puzzle: Abundance
- PWA/Xsection ongoing, W. Phelps, Thesis (2016)

Polarization Observable:

$\gamma p \rightarrow K^{+} K^{-} p$ and $\quad \gamma p \rightarrow K^{+} K^{+} \Xi^{-}$

- Beam helicity asymmetry two Kaon photoproduction, R. Badui, Thesis(2016)

Induced/transferred polarization of Ξ^{-}in photoproduction, J. Bono, Thesis (2014)

Polarization observables are essential in understanding the production mechanisms

Studies of \mathbf{N}^{*}-electrocouplings over a broad range of photon virtuality \mathbf{Q}^{2} offer unique information on the

 non-perturbative strong interaction that determines the structure of differentexcited nucleons.Insight on N^{*} structure from the CLAS@JLAB data on exclusive meson electroproduction (Review papers: I.G. Aznauryan \& V.D. Burkert, Progr. Part. Nucl. Phys. 67 (2012) 1; I.G.Aznauryan et al., Int. J. Mod. Phys. E22 (2013) 1330015) .

Consistent results on \mathbf{N}^{*}-electrocouplings from independent analyses of different meson electroproduction channels suggest reliable extraction of these fundamental quantities.

Complex interplay between internal core of three dressed quarks and external meson-baryon cloud in the structure of N^{*} states is strongly dependent on the resonance quantum numbers.
$N(1675) 5 / \mathbf{2}^{-}$

Meson-baryon cloud and quark core

Meson-baryon
cloud
Quark core

- Growth of relative quark core contribution with \mathbf{Q}^{2} in gradual transition to almost unexplored domain of quark core dominance at $\mathrm{Q}^{2}>5.0 \mathrm{GeV}^{2}$.

N* Structure at High Photon Virtualities in Exploration of Strong Interaction

CLAS12 is the only facility foreseen in the world capable of determining electrocouplings of all prominent \mathbf{N}^{*} at $5<Q^{2}<12 \mathrm{GeV}^{2}$. For the first time, almost direct access to the quark core at the distances where the transition from quark-gluon confinement to perturbative QCD regime is expected.

Dressed quark mass function

$\Delta(1232) 3 / 2^{+}$ Jones-Scadron convention
J. Segovia et al., arXiv:1408,2919 [nucl-th].

Consistent results on quark mass function from electrocouplings of different resonances at $\mathrm{Q}^{2}>5 \mathrm{GeV}^{2}$:

- will prove relevance and reliable access to this fundamental ingredient;
- address two of the most challenging problems in the Standard Model: the emergence of the dominant part of hadron masses and quark-gluon confinement.
$N(1440) 1 / 2+$
D.J. Wilson et al., Phys. Rev C85 (2012) 045205 DSEQCD.
I.G. Aznauryan \& V.D. Burkert, Phys. Rev. C85 (2012) 055202 LF QM.

1. XYZ "States" in Charmonium and Bottomonium

A. Charmonium and bottomonium are simple quark-antiquark bound states in which both potential models and QCD calculations work remarkably well below open-flavor threshold.
B. Experiment indicates a variety of phenomena above open-flavor threshold (the "XYZ") in which this simple quark-antiquark picture breaks down.
C. This is a prime opportunity to study meson spectroscopy, meson-meson interactions, and QCD in general in a region that is still simple, but beyond quark-antiquark dynamics.

2. The Status of Experiment (by example)

C. Striking parallels in bottomonium:

$$
\mathrm{Y}(4260) \rightarrow \mathrm{Y}_{\mathrm{b}}(10890), \mathrm{Z}(3900) \rightarrow \mathrm{Z}_{\mathrm{b}}(10600), \mathrm{Z}(4020) \rightarrow \mathrm{Z}_{\mathrm{b}}(10650)
$$

3. The Outlook for Experiment

A. To progress, Belle, BaBar, BESIII, LHCb, etc. will keep adding pieces to the puzzle.
B. Two experiments are especially unique and timely:

B1. Belle-II

facts
KEK, Tsukuba, Japan
$\mathrm{e}^{+} \mathrm{e}^{-}$in bottomonium
$50 \times$ data of Belle
start date in 2018

B2. BESIII

> facts
> IHEP, Beijing, China
> $\mathrm{e}^{+} \mathrm{e}^{-}$in charmonium
> running since 2009
> 10 more years?
broad QCD topics bottomonium ISR to charmonium charmonium in bottomonium and B decays

> broad QCD topics charmonium ISR to light quarks light quarks in charmonium and D decays
C. The puzzle of the XYZ's seems imminently solvable, which would push QCD studies of mesons beyond quarkantiquark dynamics.
D. These efforts will provide critical input to similar programs in the light quark sector (e.g. GlueX at JLab).

Support Amplitude Analysis !

Physics of interest: form factors, GPD's, resonance parameters, etc. resides outside experimentally accessible range of kinematic variables.

Amplitude analysis:examples

Data Projection of Dalitz Plot

Mass $\left(K^{\wedge}+\mathrm{P}\right)\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

