dRICH Montecarlo, optimization and reconstruction

27/May/2020 RICH Simulation

A. Del Dotto, C. Fanelli, E. Cisbani ElC-eRD14 – PID Consortium

Hadron ID @ EIC h-endcap

"Simulations show that in order to satisfy the physics goals of the EIC, it is desirable to provide π/K identification in the central barrel up to 5-7 GeV/c, in the electron-going endcap up ~10 GeV/c, and in the hadron-going endcap one would need to reach ~50 GeV/c.", from the "Electron-Ion Collider Detector Requirements and R&D Handbook", January 10, 2019

Physics Requirement:

1. Continuous $\pi/K/(p)$ identification up to ~50 GeV/c in hadron endcap

Main Technological Challenges:

- 2. Geometrical constraints (relatively small longitudinal space and large transverse space)
- 3. Solenoid Magnetic Field
- 4. Radiation levels

Dual Radiator RICH in EIC Hadron-endcap

Radiators:

- Aerogel: 4 cm, n_(400nm)~1.02 + 3 mm acrylic filter
- Gas: 1.6m (1.1m ePHENIX), n_{C2F6}~1.0008
- 6 Identical Open Sectors (Petals):
 - Large Focusing Mirror with R ~2.9m (~2.0m ePHENIX)
 - Optical sensor elements: ~4500 cm²/sector, 3 mm pixel size, UV sensitive, out of charged particles acceptance

Optimized for JLEIC, preliminary implementation in ePHENIX

Phase Space:

- Polar angle: 5-25 deg
- -Momentum: 3-50 GeV/c

dRICH – Software Status

Standalone Montecarlo (GEMC/Geant4)

- Cherenkov angle reconstruction by Inverse Raytracing Method (no uncertainty in detector geometry)
- Source code: github.com/EIC-eRD11/dualRICH_inMEIC

Al-driven Optimization (original idea by C. Fanelli)

- Use Montacarlo model and an efficient maximization strategy of a figure of merit (e.g. for dRICH: combinations of $n\sigma$'s in different momentum regions)
- Flexible tool, can be ported to different detectors and combination of them!

PID reconstruction (beta) of MC data (Zhiwen Zhao contrib.)

- Event based reconstruction (from Indirect RayTracing Method)
- Provide confusion/Migration matrix (tested on PYTHIA DIS events)

Fast Parameterized Model (R. Preghenella)

Single Sector dRICH model

dRICH - MC External Assumptions

Tracking

Angular resolution	σ = 0.5 mrad (1 mm over 2 m) – whole momentum range	
Impact point resolution	σ = 0.3 mm	
Momentum resolution dP/P	/- few percent legligible effects in Cherenkov angle reconstruction	
Magnetic Field	3 Tesla Central Field in JL-MEIC spectrometer	
Space Requirement	(based on original spectrometer constraints)	
longitudinal length	JLEIC: ≈1.6 m, ePHENIX: ≈1.0 m	
transverse radius	JLEIC: ≈2.5 m, ePHENIX: ≈2 m	
beam pipe radius	<10 cm	
Background	no direct external background only backrground produced by the simulated charged particle: delta-rays, Rayleigh scattering	

dRICH - MC Internal Assumptions

Aerogel radiator	n=1.02, 4 cm Characteristics scaled from CLAS12/RICH measurements
Gas radiator	n=1.0008, 160/100 cm - C2F6 yield scaled from CF4 data (x0.7); chromaticity from literature (NIMA 354(1995)417); constant absorption length (need to be measured)
Mirror	Reflectivity from CLAS12/RICH measurement; Roughness not included
Photon Detector	3 mm pixel size; 200-500 nm MAPMT (binary readout mode) Characteristics from CLAS12 measurements
Vessel	no thickness assumption so far
Background	
Sensor Electronics	Random - spatially uniform on photosensor, poissonian with 30 hits/event mean (assuming 1kHz/pixel dark count x 100 ns) Note: uniform background hits do not influence noticeably the angular resolution; they influence the PID and therefore the migration matrix
Acrylic filter	3.2 mm (from HERMES and LHCb), remove aerogel photons (Rayleigh scattering) below 300 nm impact on ≈1% of signal photons
Particle Generation	All charged particles originate from the vertex and are uniformely distributed in the angular phase space RICH MC details 7

Main Optical Characteristics

Focal surface – C₂F₆ gas

Spherical aberrations of the mirror grows up with the tilt angle; they are sizable in a small space outward-reflecting configuration!

dRICH MC Cherenkov Angle Resolution

Single Photon Cherenkov Angle Resolution

- Main contributors shown
- Charged particle momentum 30 GeV/c
- Photo sensor surface "optimized" (slightly curved)

dRICH: other Montecarlo predictions

Need prototyping to get validation

Aerogel – thickness vs number of photons

thickness to gain some photon at high angles

Number of p.e. for the gas – C_2F_6 (n = 1.00086)

The above distributions are resized by 0.7*Npe, assuming the same normalization of CF4

dRICH separations in JLeic and ePHENIX

• Use Bayesian Inference to efficiently maximize proper Figure of Merit: π -K Cherenkov angles separation in critical phase space regions (e.g. TOF-aerogel, aerogel-gas transitions, high momentum limit ...)

parameter	description	range [units]
R	mirror radius	[290.0,300.0] [cm]
pos r	radial position of mirror center	[125.,140.] [cm]
pos l	longitudinal position of mirror center	[-305.,-295.] [cm]
tiles y	shift along y of tiles center	[-5,5] [cm]
tiles z	shift along z of tiles center	[-105,-95] [cm]
tiles x	shift along x of tiles center	[-5,5] [cm]
naer.	refraction index of aerogel	[1.015,1.03]
taer.	aerogel thickness	[3.0,6.0] cm

Use case implementation used 8 parameters, but is not limited to them.

• The optimization approach can be ported to any detector (or combination

of detectors) development where a detailed MonteCarlo exists

J.Inst., vol.15, May 2020 DOI: 10.1088/1748-0221/15/05/P05009

27/May/2020

Inverse Ray-Tracing IRT Event Based Reconstruction

Reconstruction essential to get physics results

- Nt : tracks (+ background «dummy track»)
- Nh : photon hits (photoelectrons)
- Nr : radiators (aerogel and gas)

Np : potential particle types (e,pi,K,p)

 ~40% of PYTHIA events have multiple tracks in dRICH
~50% of them overlapping rings;
Simple track based IRT → π/K contamination>10%

Global naive «brute force» approach: run over all possible combinations of

Track ∈ Particle type hypothesis: Np^Nt Photon hits ∈ (Track ⊗ Radiator + Background) : **(Nt*Nr+1)^Nh** Each combination has an associated Likelihood; take the maximum

Our approach:

- Determine (by IRT) the potential emission angles corresponding to each photon hit
- Split the problem in two steps (for each event):
 - Sequential hits association to tracks/radiators using a first likelihood L1 (combinations drop to (Nt*Nr+1)*Nh)
 - 2) Once all hits are associated, estimate a global Likelihood (L2) for each (track \in particle) combination; choose the combination with max L2

Example: event with 2 tracks and 15 hits

Brute Force: up to ~488 billion combinations Our approach: 1200 combinations

Based Global Reconstruction

Particle Type (p), Radiator (r), Track (t), Hit (h)

L1: Function of distance between estimated and expected ϑ_C normalized to σ_ϑ L2: $\sum_{(t,r)} Gaus(\langle \vartheta_C \rangle) \times Poisson(N_{pe})$

27/May/2020

dRICH MC details

with contributions of Zhiwen Zhao

27/May/2020

dRICH Prototype Design

- Design in advanced stage, mechanical details being finalized
- Standard Vacuum Technologies to optimize gas handling
- Two tuneable mirrors system for using the same detector
- Common (small) sensitive surface for both aerogel and gas photons
- Detector and aerogel box isolated from the gas tank

L. Barion M. Contalbrigo

27/May/2020

dRICH MC details

dRICH Consolidated Prototype Expected Performance

Chormatic and pixel-gas errors are comparable in prototype

L. Barion M. Contalbrigo

27/May/2020

dRICH MC details