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Based on my slides at ACTS tracking workshop 2020

https://indico.cern.ch/event/917970/contributions/3861752/
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The tracking challenge

● Much increased combinatorics with high pileup at future hadron colliders

– e.g. ~6k particles/event with m = 200 at HL-LHC

Accurate, efficient and fast tracking software is needed to achieve 
physics goals

– Could we benefit from fast tracking techniques, parallelism and 
acceleration?

Increased track reconstruction time Increased CPU consumption
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           Goals, Design and Components
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● Prepare an experiment-independent tracking toolkit for future detectors 
based on ATLAS tracking experience (well tested but thread-unsafe, difficult to 
maintain)

– Targeting at ATLAS at HL-LHC, but also for other experiments, e.g. sPHENIX, 
Belle-II, CEPC etc.

● Provide an open-source R&D platform for new tracking techniques and 
hardware achitectures

ACTS goals

https://github.com/acts-project/acts

Latest: v0.26.00Jun 2016 - 
v0.01.00

Migration from 
gitlab to github

Current main contributors to the repository

Members from US side:
➔ UC Berkeley: Xiaocong Ai, Heather Gray, Irina Ene
➔ LBNL: Charles Leggett
➔ Stanford University: Lauren Tompkins, Rocky Bala Garg
➔ Oak Ridge National Laboratory: Joe Osborn
➔ Florida State University: Tony Frawley

https://github.com/acts-project/acts
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● Modern C++ 17 concepts

● Highly-templated design to avoid virtual lookup

– Detector and magnetic field agnostic

● Efficient memory allocation and access

– Eigen-based Event Data Model (EDM)

– Uses fixed-size EDM as much as possible

● Strict thread-safety to facilitate concurrency

– Const-correctness, stateless tools

● Supports for contextual condition data

– Allow event execution with different 
Geometry/Calibration/Magnetic field in flight

ACTS concepts & design
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● Minimal dependencies

– Eigen library

– Boost (only for building unit test)

● Rigorous unit tests

● Highly configurable for usability

● Well-documented

– On-going efforts for further improvement

https://acts.readthedocs.io/en/latest/

ACTS concepts & design

See various tutorials here

https://acts.readthedocs.io/en/latest/
https://indico.cern.ch/event/917970/sessions/350330/#20200526
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ACTS components and functionalities

● A light-weight Gaudi-style test framework for event processing, integration and concurrency test
● Integration into acts-core as examples to test core implementation

● Fast simulation engine 

● Integrated into acts-core

Continuous tracking infrastructure consolidation and tools completation
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          Geometry and Navigation
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Geometry building
● To reduce CPU consumption and navigation speed-up, tracking geometry (i.e. 

geometry used for track reconstruction) is simplified from full simulation geometry

– Binding via Acts::DetectorElementBase which can be converted from other detector 
element representation via geometry plugins:

● TGeo (Acts::TGeoDetectorElement)

● DD4hep (Acts::DD4HepDetectorElement)

● Implemented HEP detector geometry

– Silicon, Calorimeter, MuonSpectrometer
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The Surface class
● Acts::Surface is the key component of tracking geometry

– Surface concepts are largely transcribed from ATLAS SW

● Different concrete surfaces have different local coordinate definitions and shapes

– Shape is described by Acts::SurfaceBounds 

Surface types in ATLAS SW

Acts::LineSurface

Acts::PerigeeSurface Acts::StrawSurface

Defined by beamline/wire’s 
direction and vector from 
beamline/wire to closest 
approach of the track
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Material description

● Material effects need to be considered in tracking

● Material mapping tools allows to map (averaged) Gean4-based full detector 
material (recorded using Geantino scan) onto either surfaces or volumes

X0 ratio Validation/Geantino vs h for ITk
X0 ratio Validation/Geantino vs h for a 
dummy Calorimeter

Surface mapping for e.g. Silicon:
➔ Mapping material to discrete binned 

surfaces
➔ Material is considered when surface is 

crossed

Volume mapping for e.g. Calorimeter:
➔ Mapping material to 3D volume grid 

points
➔ Material is considered at each 

propagation step

 see C. Allaire’s slides

https://indico.cern.ch/event/902132/contributions/3797623/subcontributions/303231/attachments/2012522/3362974/Material-Mapping.pdf
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● Acts::TrackingGeometry is a collection of Acts::TrackingVolume fully 
connected via Acts::BoundarySurface

– Acts::VolumeBounds classes defines the shape of volumes and create the 
corresponding boundary surfaces

● Boundary surfaces are the key component to navigate between volumes

– The uniquely defined normal vector of the boundary surface helps define volumes 
on both sides

Navigation



 13

Magnetic Field & Track Parameter 
Propagation
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Magnetic field

● Magnetic field interfaces:

– Constant magnetic field

– Interpolated magnetic field

● Calculates an interpolated B field value from a grid of 
known field values

– Analytical solenoid magnetic field

● Calculates field vectors analytically for a solenoid field

ATLAS Magnetic field in ACTS

Interpolated magnetic field

● Magnetic field access:

– Cache of field value could make 
the access less expensive 

– To ensure thread-safety, the field 
cell is cached by client and 
passed between client and 
magnetic field service via client 
function argument
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Track parameter propagation

● Timing information is included in 
integration to allow for time measurement

● No additional overhead

● WIP for full free parameters and 
covariance representation without 
binding to surface

● Facilitates tracking for detector with many 
measurements, e.g. TPC, Drift Chamber

Integrating motion of particle transport in magnetic field

● Adaptive Runge-Kutta-Nyström method is 
implemented as the primary integration

● ATLAS Stepper but rewritten using Eigen

● Dense Environment Extension for 
transport in dense volumes, e.g. 
calorimeter

Concept of FreeMeasurementApproacher is tested

https://github.com/acts-project/acts/issues/165
https://iopscience.iop.org/article/10.1088/1748-0221/4/04/P04016/pdf
https://github.com/acts-project/acts/pull/226
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Propagator interface

Options<Actors, Aborters>

Integrating particle transport & geometry navigation
Highly-templated design emphasizing on speed and customizability

allows for custom execution/abortion at each integration step

 e.g. MaterialInteractor, KalmanActor
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          Event Data Model
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          Track Parameter EDM

Free (global) representation:

G = (x, y, z, t, T
x 
, T

y 
, T

z 
, q/p)

● (x, y, z): global position
● (T

x 
, T

y 
, T

z
): momentum direction

Meaning of l0  , l1 for Bound parameters varies with surface 

type, e.g. for perigee track parameters at perigee surface
l0 = d

0
, l1  = z

0

Local representation:

L = (l0 , l1 , ɸ, θ, q/p, t) 

● l0  , l1 
: Coordinates (could be non-Cartesian) in 

local frame:

➔ Local surface frame: 
Acts::SingleBoundTrackParameters

➔ Local frame moving along the track: 
Acts::SingleCurvilinearTrackParameters

● p, ɸ, θ: Momentum and direction

● q: Charge

● t: Per-track timing info

Transforms between them are 
handled by methods of surface 
and stepper engine 

l
x

l
y

l
z
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          Measurement EDM

● Acts::Measurement is templated on source link, i.e. original detector 
measurement and sets of measured variables to support different detectors

● Source link must satisfies defined source link concept

● std::variant implemented Acts::FittableMeasurement is a wrapper of heterogeneous 
Acts::Measurement

● Additional calibration of original 
detector measurement is allowed 
during fitting

● Calibrator will turn the SourceLink 
into Acts::FittableMeasurement 
with the help of predicted track 
parameters
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         TrackState EDM

● Acts::TrackState is a wrapper of Track Parameters and Measurements

– Based on concept of KalmanFilter

Via Calibrator during fitting
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         Track EDM

● Eigen::Array based track EDM (Acts::MultiTrajectory), i.e. container of track states 
on trajectories
● Provides read-write views into separate storage of parameter coefficients and covariance

● Keeps track of storage index

● Allows for branching of tracks (multi-trajectories case) via parent relationship

● Avoids storage duplication for shared measurements and parameters
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          Track/Vertex Fitting&Finding
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Track fitting with KalmanFilter

● Acts::KalmanFitter (KF) is used as an Actor in Acts::Propagator
● Nested consideration of material effects at each filtering step

– preUpdate → Kalman filtering →  postUpdate

● Supports hole search and outlier rejection during the fitting
● Supports two different approaches for smoothing

– Using 'smoothing -matrix' formalism based on Jacobians in forward filtering

– Run an additional Kalman filtering in backward direction

● Extension for calculating global track parameters covariance

– Fundamental ingredient for KF-based alignment approach

● Gaussian Sum Filter as non-gaussian extension is implemented ( yet to be 
finalized)
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KalmanFitter fit interface

● Fitting inputs:
– Measurements (unsorted source 

links, e.g. clusters) on a known 
trajectory

– Starting parameter (with large 
uncertainty)

– User-defined KalmanFilter options

● Fitting result:
– A MultiTrajectory object with single 

track entry index

– Fitted parameter at user-defined 
target surface



 25

KalmanFilter performance

● Validated with p
T
 down to 100 MeV

● 100% fitting efficiency

● Defined as 

Fitting efficiency vs. h

TrackML detector, ATLAS B field

N fit succeeds

N truth

Perigee track parameter resolution validation

 Single track fitting time vs. pT

Single muon
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Track finding

● A combinatorial seed finder for track seeding

– Fine-grained parallelism (independent search 
of Top and Bottom SpacePoint for Middle SP)

● The Combinatorial Kalman Filter (CKF) for 
track following

– Simultaneous tracking fitting and finding (no 
refitting is needed)

– Allows track branching if more than one 
compatible measurement found on a surface

● Supports user-defined measurement 
search and branching strategy

– Default selection criteria is based on 
Kalman filtering c2

– Allows stopping of bad quality branch

CKF results for ttbar events with 
m = 200 (~7k particles, ~80k hits)

Local approach:  track seeding + track following
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CKF track finding interface

● Track finding inputs:
– All Measurements in one events

– Starting parameter (from 
seeding)

– User-defined CKF options

● Track finding result:
– A MultiTrajectory object with 

multiple track entry indices

– Fitted parameters at user-
defined target surface
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● All hits from truth particles with p
T
>100 MeV 

are considered

● Track finding efficiency: 

● Fake rate:

● Duplication rate: 

           CKF performance

N reco(selected ,matched )

N truth(selected )
N reco(selected ,unmatched)

N reco(selected )

Efficiency vs. h

➔ Reco-truth matching:

➔ Simple track selection: n
Hits

>=9

Fake rate vs. h Duplication rate vs. h

N reco(selected ,matched ,duplicated )

N reco(selected ,matched )

Fake rate < 10-4 Duplication rate ~ 5%, 
could be suppressed by 
tighter KF c2 criteria

Efficiency ~ 99% with |h|<1

<m> = 200 <m> = 200 

<m> = 200 

TrackML detector, ATLAS B field
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Vertex finding/fitting
● Various vertexing tools have been transcribed from ATLAS vertexing 

algorithms with performance well validated against ATLAS SW

– ML for Vertexing is being explored (see Bastian’s CTD slides)

● Two approaches:

– Iterative fitting-after-finding

● Iterative Vertex Finder (IVF) (used at ATLAS Run-2)

– Finding-through-fitting

● Adaptive Multi-Vertex Finder (AMVF) (to be used at ATLAS Run-3)

● Seed finder: 

● Z-Scan Seed Finder

● Gaussian Track Density Vertex Finder

● Gaussian Grid Track Density Vertex Finder

● Utilities: track selection, track linearizer, impact point estimator,  
deterministic annealing tool etc.

● Vertex fitter

● Full-Billoir Vertex Fitter

● Adaptive Multi-Vertex Fitter 

Portable tools used in IVF and AMVF

https://indico.cern.ch/event/831165/contributions/3717103/
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Iterative Vertex Finder (IVF)
(see B.Schlag’s slides)

Select tracks from 
remaining tracks

https://indico.cern.ch/event/902131/contributions/3797615/subcontributions/302749/attachments/2007646/3353484/vertexing_updates.pdf#search=bastian
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Adaptive Multi-Vertex Finder (AMVF) (see B.Schlag’s slides)

tracks  can have weights 
to multiple vertices

Select tracks 
from global 
track pool

(strong binding with AMVF)

https://indico.cern.ch/event/902131/contributions/3797615/subcontributions/302749/attachments/2007646/3353484/vertexing_updates.pdf#search=bastian
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● Highly configurable design of 
vertex finder
– Vertex fitter

– Seed finder

– ImpactPoint estimator

– Linearizer

– ...

● Vertex finding inputs
– A collection of tracks

– Vertexing Options

● Vertex finding outputs

– A collection of found vertices

Vertex finding interface
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Vertexing performance

<m>=60 ttbar 

AMVF Vertex z positon resolution

Gaussian Grid Track Density Vertex Finder 
timing performance

● Vertex position resolution agrees with 
ATLAS results on mircometer level

● Significant speed-up w.r.t. to ATLAS 
algorithm

AMVF timing performance

(see B.Schlag’s slides)

<m>

https://indico.cern.ch/event/831165/contributions/3717103/attachments/2024665/3386509/acts_vertexing_slides.pdf
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          R&D and Applications
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● Provides support for new tracking techniques R&D

– Similarity Hashing and learning

– Hep.TrkX & Exa.TrkX project

● Parallelism and acceleration facilitated by hardware architecture

– Intra-event parallelism (track-level parallel fitting)

– GPUs-accelerated tracking (e.g. seed finding, propagation, navigation)

R&D

ACTS seedfinder with CUDA (@NVIDIA GTX 1070)

B. Yeo, C. Legett et. al

 see G. Mania’s slides

X. Ai

https://indico.cern.ch/event/831165/contributions/3717122/
https://indico.cern.ch/event/831165/contributions/3717124/
https://indico.cern.ch/event/917970/contributions/3861754/
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       Application to (experiment) detectors
● Detector geometry implemented:

– sPHENIX Silicon + TPC (see Joe’s talk later)

– TrackML Detector

– Open Data Detector

– ATLAS ID+Calo, ATLAS ITK

– FASER Silicon

– CEPC Silicon+TPC

– Belle-II Silicon

– PANDA

– FCC-hh

● On-going/planned implementation:

– ATLAS Muon System

– Belle-II Drift Chamber

sPHENIX Silicon

sPHENIX TPC

see slides here for more 
experiments experience

https://indico.cern.ch/event/917970/sessions/350328/#20200525
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Summary

● ACTS has matured a lot as a  tracking toolkit over the past year

– Consolidation of tracking infrastructure, e.g. geometry, propagator, EDM

– Implementation of new tracking features, e.g.  KalmanFilter, CKF,  IVF, AMVF

● ACTS is an active R&D platform for new tracking techniques (ML) and hardware 
architectures

● Future focus will be facilitating application and optimization of the tracking toolkit

– e.g. integration into ATLAS SW for ATLAS Run3

Up to 54 participants at the latest 
ACTS tracking workshop 2020

● Growing interest in experiment 
application& contribution

● ATLAS ID+Calo, ATLAS ITK, 
FASER, CEPC, sPHENIX, 
BELLE-II, PANDA

https://indico.cern.ch/event/917970/
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backup
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Experiments:

ATLAS

LHCb

CEPC

FASER

Belle-II

ACTS members/developers

50 ACTS Members (~1 year ago: 27)
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The SurfaceBounds class
● The surface shape is described by Acts::SurfaceBounds 

ACTS Surface bound examples

CylinderBounds DiscSurfaceBounds

ConeSurfaceBounds

PlaneBounds

LineBounds
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CKF timing test

TrackML detector, ATLAS B fileld

CKF time/event vs. <m>

Considering all truth charged 
particles with p

T
>100 MeV

Each filtering step needs to loop 
over all the source links on the 
surface for the source link 
selection, Could be speed-up by 
fast source link selection
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● An AlgorithmContext object is 
used to support on-the-fly event-
dependent changes of alignment/
calibration/magnetic field

Contextual alignment and calibration

● Concept of contextual alignment and calibration has been validated

Propagation tests with contextual alignment
(Different alignment every single event, n

threads
 = 4)

Track fitting test with contextual calibration
(Different calibration every 10 events, n

threads
=8)

TrackML detector, ATLAS B fileld
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        Fast Simulation

● Event Data Model

– Concrete particle and hit type

– Flat, sorted data container for particle and hit

● Event generator

– Particle Gun and interface to Pythia8 and HepMC3

● Detector material effects modeling

– Energy loss and multiple scattering are validated

– Hadronic interaction is currently reparameterised

– Foreseen use of Geant4 for particle decay

– Photon Conversion and positron annihilation are missing

● Detector response emulation (i.e. digitization)

– Including pseudo-realistic clustering model (without clustering merging yet)

● Work-in-progress to use Json-based geometry/segmentation/material 
information at fast simulation chain

Simulation with ITk pixel
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