Measurement of Transverse Single Spin Asymmetry at Forward Rapidity by the STAR Experiment at \sqrt{s} = 200 and 500 GeV

Zhanwen Zhu, Shandong University

BNL Nuclear Physics Seminar, Jun. 23 2020

Outline

Motivation

Experiment setup

Analysis:

Dataset

Photon/ π^0 reconstruction

Asymmetry calculation

Systematic uncertainty

Result and discussion

□ Summary

Motivation

- Transverse single spin asymmetry(TSSA/ A_N)
- The phenomenon was first founded in 1970s and can not be explained by LO QCD calculation

Aidala et al. Rev. Mod. Phys., 85,655(2013)

A lot of work was done to explore the underlying mechanisms in the past few decades

Motivation

- Transverse momentum dependent PDF(TMD)
- Collinear twist-3 factorization

The models have different energy scale requirements. But they share some similarities

- A decomposition of the contributions of TMD
 - Initial state effect: asymmetry originates from PDF

 $\hat{f}_{q/p^{\dagger}}(x, \mathbf{k}_{\perp}) = f_{q/p}(x, k_{\perp}) + \frac{1}{2} \Delta^{N} f_{q/p^{\dagger}}(x, k_{\perp}) \mathbf{S} \cdot \left(\hat{\mathbf{P}} \times \hat{\mathbf{k}}_{\perp}\right)$ Sivers function

• final state effect: asymmetry originates from fragmentation

Transversity \otimes **Collins function**

Both effects can contribute to the TSSA.

• Experimental data is very important in validating the factorizations and constraining the distribution functions

Motivation

Jet TSSA – sensitive to the initial state effect.Collins asymmetry – sensitive to the final state effect.

Experiment Setup-RHIC & STAR

The Relativistic Heavy Ion Collider at BNL provides unique opportunity to study spin physics because it is the world's only polarized proton-proton collider.

Experiment Setup-RHIC & STAR

The Solenoid Tracker At RHIC is powerful detector to conduct many different kinds of experiments.

STAR installed Forward Meson **Spectrometer** in 2008. It can be used to reconstruct the neutral pion signals.

Pseudo-rapidity 2.6 to 4.1

Experiment Setup-FMS

EM-Calorimeter made out of lead glass
 Ideal way to detect photons from π⁰ decays
 Large rapidity range in the forward direction
 Two cell types

Cell Type	Radiation Length	Width	Length	Numbers
Small cell	$2.50~{ m cm}$	$3.87~{ m cm}$	$45.0~{\rm cm}$	476
Large cell	$3.75~\mathrm{cm}$	$5.81~{ m cm}$	$60.2~{ m cm}$	788

Layout

Trigger logic

Analysis- Dataset

Dataset:

STAR transversely polarized proton-proton collisions

Year	Energy	Events
2011	500 GeV	165M
2015	200 GeV	569M

Beam polarization:

52 / 57% (500 / 200 GeV)

Trigger:

FMS-Board-sum and FMS-Jet-patch

Bad channels in Run11

Analysis- Photon/ π^0 reconstruction

Analysis- Asymmetry calculation

The **relative luminosity** and **detector efficiency** can be difficult to determined. $N^{\uparrow}(\phi) = \epsilon \mathcal{L}^{\uparrow} \sigma^{\uparrow}$ $= \epsilon \mathcal{L}^{\uparrow} (1 + pol * A_N \cos \phi) \sigma$

"Cross-ratio" method help eliminates those factors

$$pol \cdot A_N^{\text{raw}} \cos \phi = \frac{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} - \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}}{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} + \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}}$$

Background subtraction

The fraction comes from the fitting of the mass spectrum Signal/background shapes are from simulation

$$A_N^{\text{raw}_{sig}} = f_{\text{sig}_{sig}} * A_N^{\pi^0} + (1 - f_{\text{sig}_{sig}}) * A_N^{bkg}$$
$$A_N^{\text{raw}_{sb}} = f_{\text{sig}_{sb}} * A_N^{\pi^0} + (1 - f_{sig_{sb}}) * A_N^{bkg}$$

Analysis- Collins Asymmetry

VS.

TSSA

 $N^{\uparrow}(\phi) = \epsilon \mathcal{L}^{\uparrow} \sigma^{\uparrow}$ $= \epsilon \mathcal{L}^{\uparrow} (1 + pol * A_N \cos \phi) \ \sigma$

- > Azimuthal angle
- > All π^0 candidates
- Background subtraction

Collins asymmetry $N^{\uparrow}(\phi_c) = \epsilon \mathcal{L}^{\uparrow} \sigma^{\uparrow}$ $= \epsilon \mathcal{L}^{\uparrow} (1 + pol * A_{UT} \sin \phi_c) \sigma$

- Collins angle
- > Only π^0 within a jet
- ➢ No Background subtraction

For jet reconstruction: For π^0 in a jet :

- Anti-kT R-0.7 $\Delta R > 0.04$
- $p_T > 2 \text{ GeV}$

The jet is only "electromagnetic Jet" 12

Analysis- Systematic uncertainty

Uncertainties:

- π^0 /jet energy uncertainty(x_F an z_{em}): calibration, non-linear response, radiation damage
- π^0 TSSA: background subtraction
- Beam Polarization

Corrections:

- Jet TSSA: background correction, underlying event correction, jet corrected to particle level
- Collins asymmetry: Collins angle resolution correction, jet corrected to particle level

	Analysis	Uncertainties types (Run-11/Run15)			
_	π^0 TSSA	x_F	Asymmetry	Beam polarization	
		$<\!\!4.4\%/3.0\%$	< 5.8%	$<\!\!3.4\%/3.0\%$	
	Jet TSSA	x_F	Asymmetry	Beam polarization	
		${<}6.7\%/4.2\%$		$<\!\!3.4\%/3.0\%$	
	Collins	z_{em}	Asymmetry	Beam polarization	
	$\operatorname{asymmetry}$	$<7.9\%/5.1\% \times (1-z_{em})$		$<\!\!3.4\%/3.0\%$	

Analysis- Observables

All measurements are done in 200 GeV (Run-15) and 500 GeV (Run-11)

• 1) π^0 TSSA: initial+final state effect

TSSA as function of Feynman-x (x_F) ; $x_F = \frac{E_{\pi L}}{E_{beam}}$ TSSA as function of p_T ; Isolated/non-isolated $\pi^0 A_N$ as function of Feynman-x

- 2) Jet TSSA : initial state effect
- 3) Collins Asymmetry : final state effect

The jets used in 2) 3) are electromagnetic Jet(EM-jet) in the analysis

Result- π^0 TSSA vs. x_F

Theory curves: J. Cammarota, et al. arXiv:2002.08384(2020)

 \Box The π^0 TSSA increases with x_F .

□ Consistent in 200 GeV and 500 GeV. Energy dependence is weak.

Comparison to previous measurements

- □ Weak collision energy dependence of the π^0 TSSA from 19.4 to 500 GeV
- Comparison to the former FPD results at STAR shows higher TSSA in current measurement, which can be explained by the higher average p_T

Result- π^0 TSSA vs. p_T

Theory curves: J. Cammarota, et al. arXiv:2002.08384(2020)

 \Box This measurement was done in the overlap x_F regions.

□ The 200 GeV data shows significant increase of TSSA below 3 GeV.

 \Box The 500 GeV data flattens over the p_T range.

Result: isolated π^0 **TSSA**

- \square Motivation: investigate the π^0 event topology (π^0 with no other particle around)
- Dethod: in a surrounding area (in η- ϕ space, R=0.7), if the π^0 takes most of the total energy, it is defined as isolated. The cut is placed at an energy fraction z=0.9 and 0.98

Fractions of different types of π^0 event in the overall sample

Result: isolated π^0 **TSSA**

□ The TSSAs of the two types of π^0 are significantly different. Isolated π^0 TSSA dominates

□ The physical origin and mechanism accounting for higher TSSA of isolated π^0 is not known yet – implication of a third origin?

Theory curves: J. Cammarota et al. arXiv:2002.08384(2020)

Result: jet TSSA

- □ The jet TSSA is a few times smaller than the π^0 TSSA in the same x_F bin.
- □ Energy dependence is more prominent
- The jet with photon multiplicity minimum requirement has significantly smaller TSSA.
- □ The $A_N DY$ result shows the TSSA of the full jet, and is consistent with the result of the EM-jet which has at least 3 photons.

Theory curves: L. Gamberg, Z. Kang, A. Prokudin, Phys.Rev.Lett.110(2013)23,232301

Result: Collins Asymmetry for π^0 in a jet

The Collins asymmetries are very small in both energies
 This reflects the cancellation of the Collins function of the u/d quark

Summary

- □ We measured the π^0 /jet TSSA and Collins asymmetry using the FMS in STAR 200 and 500 GeV p-p data
- □ The π^0 TSSA results show weak energy dependence through 20 to 500 GeV
- □ We investigated the π^0 event topology. The isolated π^0 TSSAs are significantly larger than the non-isolated π^0 , the mechanism of which remains unclear. It offer a new perspectives of the origin of TSSA
- □ We measured the jet TSSAs and Collins asymmetry to separate contribution from the initial and final state effect, both of which are small
- These measurements will provide important inputs for further theory investigation for TSSA