Update on luminosity monitor
 Jaroslav Adam

BNL

June 2, 2020
YR Polarimetry \& Ancillary Detector Meeting

Outline

- An overview of previous Geant4 simulations of the luminosity layout was given at the far-forward detectors meeting here
- Now a geometry model for spectrometer acceptance will be shown, following the approach used at ZEUS in Nucl.Instrum.Meth. A565 (2006) 572-588
- Timing of photoelectrons from PbWO_{4} crystals will be shown, as a result from a full simulation of light collection and detection
- The response is too slow to be able to detect every bunch crossing separately

IR layout, electron outgoing side

- Photon exit window is located at $z=-20.75 \mathrm{~m}$, spectrometer detectors at $z=-36.5 \mathrm{~m}$
- Preliminary positions, getting fixed from synrad simulations and beam pipe design
- All components shown here are implemented in Geant4 model, with D3ER drift space transparent

Geometry model for spectrometer acceptance

- Electron/positron gets transverse momentum from the dipole magnet, $p_{T}=\int B_{X} \mathrm{~d} z$

- Position y on the detector is given by the length / from magnet center to the detector and electron momentum p :

$$
y=I \frac{p_{T}}{p}
$$

- One electron in the pair has a fraction of photon energy $z=p / E_{\gamma}$
- The other has a fraction $1-z$
- Positions of the pair arriving on up and down detectors y_{up} and y_{down} are given by z and E_{γ} :

$$
\begin{equation*}
z E_{\gamma}=\frac{l p_{T}}{y_{\mathrm{up}}}, \quad(1-z) E_{\gamma}=\frac{l p_{T}}{y_{\mathrm{down}}} \tag{1}
\end{equation*}
$$

Range of accepted y positions in spectrometer detectors

- Both up and down detectors have a minimum and maximum accepted y
- The figure shows z and E_{γ} at detector minima and maxima in y according to Eq. 1
- Photon is detected when electron and positron are within the accepted range in y, it is the enclosed area in the figure
- Spectrometer acceptance at a given E_{γ} is the range in z of the area

Spectrometer acceptance

- Simulation of 1 M bremsstrahlung events, $18 \times 275 \mathrm{GeV}$ beams
- Acceptance is a fraction of events with at least 1 GeV in both up and down detector
- The model curve is application of Eq. 1 and min and max intervals from page 5
- Length of the magnet is 0.6 m , field is 0.26 T
- Detectors are spaced symmetrically at $y_{\text {min }}=42 \mathrm{~mm}$ and $y_{\text {max }}=242 \mathrm{~mm}$
- Length from the magnet center to the detectors is 8.2 m
- Good agreement between Geant4 and the model

Light collection and timing in the model of PbWO_{4} photon detector

- A model of 7×7 cells calorimeter was initially assumed for photon detector and spectrometer detectors

Figure: Photon in PbWO_{4} calorimeter

- Time shape of photoelectron signal will be shown in next pages
- The response is slow with respect to expected bunch rate

Figure: Light collection in calorimeter cell

Photoelectron pulses from a calorimeter cell

- Charge in number of photoelectrons created in the middle cell in 0.5 ns intervals
- Pulses of 12 consecutive events in Geant4 simulation of photons with uniform energies from 1 to 18 GeV
- An ideal scope would provide image like this
- Decay time depends weekly on pulse amplitude
- About 20 ns for all pulses to completely vanish
- Two times the bunch spacing at lower energies, half at the top energy

Pulses for events with highest and lowest energies

- Signals from events with photons below 3 GeV or above 17.5 GeV
- The same simulation of 1 k photons with uniform energies from 1 to 18 GeV as on previous page
- Confirms the conclusion that the decay time is too long with respect to bunch spacing

Summary

- Geometry model for spectrometer acceptance works as a fast approximation to the full simulation
- Response from PbWO_{4} calorimeter cells would be too slow to separate every bunch crossing
- IR drawing was created using irview: github.com/adamjaro/irview
- Bremsstrahlung generator is implemented in eic-lgen: github.com/adamjaro/eic-Igen
- Geant4 and analysis codes are in Imon: github.com/adamjaro/Imon

Backup

Geant4 model for electron-outgoing IR

- Drift spaces in grey are transparent to all particles
- Tagger 1,2 and ECAL detectors mark hits by incoming particles
- Solenoid field uses the BeAST parametrization
- Beam magnets are shown in blue
- Components of luminosity monitor are on the opposite side to the taggers
- The layout ends with a marker at Q3eR position

Model of exit window

- Layer of passive material to convert bremsstrahlung photons to $e^{+} e^{-}$pairs
- Also provides shielding against low energy synchrotron radiation
- Implemented as a half-cylinder of 1 mm thick aluminum, 10 cm radius and 100 mrad tilt along vertical y axis
- The tilt angle is motivated by synchrotron radiation studies

Model of photon detector

- Detects direct photons not converted on the exit window
- Calorimeter is composed of $7 \times 7 \mathrm{PbWO}_{4}$ cells
- Each cell consists of $3 \times 3 \mathrm{~cm}$ casing made of carbon fiber, 2 mm thick, holding the PbWO_{4} crystal inside
- Length of each cell is 35 cm , same for casing and crystal
- Only the crystals, shown in red, are sensitive volume
- Response to a 1 GeV photon is shown on the plot

Optical properties and light detection in model of PbWO_{4} crystal

- Scintillation light yield is 200 per MeV with 6 ns decay constant (Knoll textbook)
- Wavelenght 420 nm (peak of emission as measured for ALICE)
- Optical properties approximately according to ALICE TDR
- Uniform across 350-800 nm
- Refractive index 2.4, absorption length 200 cm
- Reflectivity 0.8 , efficiency 0.9
- Detection by PIN diode, magenta square in the drawing
- Silicon of $17 \times 17 \mathrm{~mm}^{2}$ area, $300 \mu \mathrm{~m}$ thickess (following ALICE device)
- Reflectivity of optical boundary from the crystal is 0.1
- Quantum efficiency is 0.8
- Detected photon creates one photoelectron of signal (after applying quantum efficiency)
- Number of photoelectrons is the output of the detector

Beam effects in eic-lgen event generator

- Vertex spread with Gaussian beam profile
- Driven by emittance in x and y and bunch length in z
- Vertex positions are generated from Gaussians in x, y and z of a given width $\sigma_{x, y, z}$
- Using pCDR high acceptance configuration without hadron cooling for $18 \times 275 \mathrm{GeV}$ ep beams:
- IP RMS beam size is $\sigma_{x}=236 \mu \mathrm{~m}$ and $\sigma_{y}=16.2 \mu \mathrm{~m}, \mathrm{RMS}$ bunch length is $\sigma_{z}=1.7 \mathrm{~cm}$
- Angular divergence
- Separate for horizontal and vertical divergence
- Implemented as Gaussian rotations of particle 3-momentum in x and y
- The specific angles are generated with pCDR RMS values of $\sigma_{\theta, x}=163 \mu \mathrm{rad}$ and $\sigma_{\theta, y}=202 \mu \mathrm{rad}$
- Improvement over the initial studies on luminosity monitor, where only a single σ_{θ} was used for Gaussian smearing of electron polar angles
- For Pythia6 events the beam effects are implemented with an afterburner approach on the scattered electrons

Bremsstrahlung photons in eic-Igen based on Bethe-Heitler formula

- Bremsstrahlung photons and scattered electrons are generated using cross section as a function of photon energy E_{γ} and polar angle θ_{γ}
- Parametrization used at ZEUS is given in terms of electron and proton beam energy E_{e} and E_{p}

$$
\begin{equation*}
\frac{d \sigma}{d E_{\gamma}}=4 \alpha r_{e}^{2} \frac{E_{e}^{\prime}}{E_{\gamma} E_{e}}\left(\frac{E_{e}}{E_{e}^{\prime}}+\frac{E_{e}^{\prime}}{E_{e}}-\frac{2}{3}\right)\left(\ln \frac{4 E_{p} E_{e} E_{e}^{\prime}}{m_{p} m_{e} E_{\gamma}}-\frac{1}{2}\right) \tag{2}
\end{equation*}
$$

- Scattered electron energy is constrained as $E_{e}^{\prime}=E_{e}-E_{\gamma}$
- Equivalent parametrization from H 1 is in terms of $y=E_{\gamma} / E_{e}$ and center-of-mass energy s

$$
\begin{equation*}
\frac{d \sigma}{d y}=\frac{4 \alpha r_{e}^{2}}{y}\left[1+(1-y)^{2}-\frac{2}{3}(1-y)\right]\left[\ln \frac{s(1-y)}{m_{p} m_{e} y}-\frac{1}{2}\right] \tag{3}
\end{equation*}
$$

- Angular distribution of the photons is given in terms of angle θ_{γ} relative to electron beam

$$
\begin{equation*}
\frac{d \sigma}{d \theta_{\gamma}} \sim \frac{\theta_{\gamma}}{\left(\left(m_{e} / E_{e}\right)^{2}+\theta_{\gamma}^{2}\right)^{2}} \tag{4}
\end{equation*}
$$

[^0]
[^0]: ZEUS: Eur.Phys.J. C71 (2011) 1574, H1: H1-04/93-287

