Compton simulation preliminary results

Ciprian Gal

Center for Frontiers in Nuclear Science * Stony Brook University

Simulation setup

- Using our default Compton generator
 - https://gitlab.com/eic/mceg/comptonRad
- The generator gives out the 4momentum for both the photon and electron together with 4 weight factors: unpolarized and polarized tree level cross sections (eq 26,27 of paper) and the order alpha corrections (not used for the following analysis)
- To obtain the average analyzing power for a particular configuration (or average over any number of bins) we need to weight by cross section
- An average FOM can also be calculated weighting by sqrt(N)

$$W_{1} = \frac{1}{2\rho^{(n)}(x)} \left[\frac{d^{n}\sigma^{(0)}}{dx^{n}}(s,-) + \frac{d^{n}\sigma^{(0)}}{dx^{n}}(s,+) \right] \text{ unpolarized xsection (26)}$$
$$W_{2} = \frac{1}{2\rho^{(n)}(x)} \left[\frac{d^{n}\sigma^{(0)}}{dx^{n}}(s,-) - \frac{d^{n}\sigma^{(0)}}{dx^{n}}(s,+) \right] \text{ polarized xsection (27)}$$

$$A_{N} = \frac{\sigma^{-} - \sigma^{+}}{\sigma^{-} + \sigma^{+}} = \frac{\sigma^{p}}{\sigma^{u}} \equiv \frac{W_{1}}{W_{2}}$$
$$\langle A_{N} \rangle = \frac{\sum_{i} A_{N,i} \cdot \sigma_{i}^{u}}{\sum_{i} \sigma_{i}^{u}} = \frac{\sum_{i} \sigma_{i}^{p}}{\sum_{i} \sigma_{i}^{u}}$$
$$\langle FOM \rangle = \frac{\sum_{i} A_{N,i} \cdot \sqrt{\sigma_{i}^{u}} \cdot \sigma_{i}^{u}}{\sum_{i} \sigma_{i}^{u}} = \frac{\sum_{i} \sigma_{i}^{p} \cdot \sqrt{\sigma_{i}^{u}}}{\sum_{i} \sigma_{i}^{u}}$$

Simulation setup

- Implemented IP12 magnet configuration
 - <u>https://github.com/cipriangal/fun4all_Compton</u>
 - Particles going in –z direction with the origin at the exit of QD12
 - The lunch angle is the same as the QD12 angle for both the electron and photon
 - Confirmed that with this lunch angle an 18GeV electron goes through the middle of all magnet apertures
 - Look at the "truth" information at different planes before and after magnetic elements

	X [m]	Y [m]	Z [m]	theta
QF13	0.17	0.00	6.19	38.40
DB23	0.07	0.00	3.25	28.80
QD12	0.00	0.00	0.30	19.20
DB23	-0.05	0.00	-2.65	9.60
QF11	-0.06	0.00	-5.59	0.00
QD10	-0.06	0.00	-16.32	0.00
QF9	-0.06	0.00	-27.04	0.00

Particle envelopes

- All the axes are in cm
- The first "truth" plane is 6 cm downstream of the vertex point

Particle envelopes: QF11 (Rmin = 20 cm)

• I increased the bore of the quad to look downstream, but we can see we would start cutting into the photon envelope if Rmin<10cm (quad center is x=-6cm)

Particle envelopes: QD10 (Rmin=8.5cm Rmax=22.5cm)

• Even with the restrictive magnet sizes we cut into the photon envelope with the QD10 outer size

Particle envelopes: "detector plane"

photon detector we only have about 42cm clearance from the center of the beamline

Detector plane: nominal configuration

Without QD10

gamma unpolXsec z=25.00 m

electron unpolXsec z=25.00 m

-6 -4 -2 0 2 4

6 8

x[cm]

-0.03

-8

Without the vertical focusing the scattered electron envelope would almost double by the time it gets to the detector plane

electron unpolXsec z=25.00 m

Without QD10

electron polXsec z=25.00 m

* Stony Brook University

Ciprian Gal

9

Vertex smearing

eicfile->set_vertex_distribution_mean(0,0,0,0);//cm, ns eicfile->set_vertex_distribution_width(4.3e-3,3.3e-3,0.9,0);//cm, ns

Here is the twiss parameters for IR12. "BETX", "BETY" is the beta function. "ALFX", "ALFY" is the slope of the beta function.

* NAME	S	L	BETX	ALFX E	ETY AL	FY
"QF13"	1823.294259	0.6	4.669745436	0.310750451	23.49304068	-0.7668571524
"DB23"	1826.241095	4.223670697	3.777088439	-0.249419231	4 37.5308403	-2.797041129
"QD12"	1829.18793	0.6	7.833576927	-1.577181773	54.98601912	0.06492603105
********* IP of the Compton polarimeter here ********						
"DB23"	1832.134765	4.223670697	25.91330713	-4.11259067	36.90923362	2.876766807
"QF11"	1835.0816	0.6	54.98959915	-2.21962997	22.61170074	0.5441235163
"QD10"	1845.805117	0.6	27.78894174	0.01007799586	54.99548409	-0.1719185813
"QF9"	1856.528634	0.6	54.99503024	0.2700717205	27.09541968	0.004988464914

 $\sigma_i = \sqrt{\epsilon_i * \beta_i}$

Species	proton	electron	Ī
Energy [GeV]	275	18	
CM energy [GeV]	140.7		
Bunch intensity [10 ¹⁰]	20.5	6.2	Ī
No. of bunches	290		
Beam current [A]	0.74	0.227	
RMS norm. emit., $h/v [\mu m]$	4.6/0.75	845/72	ŀ
RMS emittance, h/v [nm]	16/2.6	24/2.0	
β*, h/v [cm]]	90/4.0	59/5.0	
IP RMS beam size, $h/v [\mu m]$	119/10		
K _x	11	.8	
RMS $\Delta \theta$, h/v [μ rad]	132/253	202/202	ŀ
BB parameter, h/v [10 ⁻³]	3/2	100/100	
RMS long. emittance [10 ⁻³ , eV·sec]	36		
RMS bunch length [cm]	6	0.9	
RMS $\Delta p / p [10^{-4}]$	6.8	10.9	
Max. space charge	0.006	neglig.	
Piwinski angle [rad]	5.6	0.8	
Long. IBS time [h]	2.1		
Transv. IBS time [h]	2		
Hourglass factor H	0.86		
Luminosity [10 ³³ cm ⁻² sec ⁻¹]	1.	65	

Vertex smearing

Vertex smearing: vertical asymmetry

- The smearing will decrease the average measured asymmetry
- Plots in the following slides will be without any smearing

asymmetry

Vertical asymmetry: detector plane

• We can see that the analyzing power goes up to ~14% for the photon and ~20% for the eletron

- For a simple "2-side" analysis both the photon and electron effective analyzing power is a ~7% for the counting analysis
 - An energy weighted analysis would increase the analyzing power for the photon by about 2% and decrease the electron analyzing power by about 1%

AUD and position offsets (detector plane)

Vertical axis: (<A>up - <A>down)/2

-0.02

-0.01

0.01

y position [mm]

AUD block measurements – with Bfields

 While I made the claim last time there could be some gain from using two detector halves if we look at the FOM we see that is not really the case

Ideal vs detector segmentation

average asymmetry

• For the "detector" analysis the left side should be removed (not done in the following)

Electron detector segmentation

segmentation		
[um]	norm	uncertainty
400	30.53	0.06
200	75.71	0.16
100	73.74	0.14
50	73.43	0.13
10	73.01	0.11
5	73.00	0.11

- Similar to the analysis Dave showed I vertically "segmented" and normalized (0.73) the asymmetry and fit it to the expected simulation asymmetry
- We can see that event at 50um we have a shift in the "extracted" polarization

To do

- Redo analysis with smeared distributions and potential detector area
- Fold in luminosity and get a time estimate for 1% measurements
- Repeat for other energies
- Look at IP6

Backup

Vertex smearing

-0.0

9.5 x[cm]

* Stony Brook University

9

9.1

9.2

9.3

9.4

-0.01 8.9

Ciprian Gal

electron unpolXsec z=16.70 m

Ciprian Gal

-8 -6 -4 -2 0 2 4 6 8

x[cm]

x[cm] 21

8

10

x[cm]

electron unpolXsec z=25.00 m

-8 -6 -4 -2 0 2 4 6

0.03

0.02

0.01

-0.01

-0.02

-0.03L

Stony Brook University

Asym

-4 -2 0 2 4 6 8

-0.03

-8 -6

0.2

0.1

0.0

-0.1

-0

-0

8

x[cm]

electron polXsec z=16.00 m

electron polXsec z=16.70 m

-8 -6 -4 -2 0 2 4 6

0.2

0.1

0.1

0.0

-0.1

-0.3

8

x[cm]

0.03

0.02

0.01

-0.01

-0.02

-0.03

electron polXsec z=25.00 m

* Stony Brook University

x[cm]

0.03

0.02

0.01

-0.01

-0.02

-0.03

-8 -6 -4 -2 0 2 4 6

22

* Stony Brook University

23

x[cm]

electron energy*polXsec z=6.50 m

electron energy*polXsec z=16.00 m

-32.5-32.4-32.3-32.2-32.1 -32 -31.9-31.8-31.7-31.6-31.5

electron energy*polXsec z=16.70 m

electron energy*polXsec z=25.00 m

electron energy*polXsec z=5.00 m

-10 -9.9 -9.8 -9.7 -9.6 -9.5 -9.4 -9.3 -9.2 -9.1 -9

0.02

0.01

-0.01

-0.02

-0.03

-8

-6 -4 -2 0

2 4

6 8

x[cm]

0.2

0.1

-0.1

-0.0

-0.1

_0

-0.

-0.

gamma energy*polXsec z=16.00 m

gamma energy*polXsec z=16.70 m

÷

-0.6

-0.8

0.03

0.02

0.01

-0.01

-0.02

-0.03

-8

-6

-4 -2 0

2 4 6 8

x[cm]

0.2

_

-0.

0.2

0 1

-0.1

-0.0

_

_

-0

x[cm]

gamma energy*polXsec z=25.00 m

25m (det plane): noQD10

AUD block measurements – with Bfields

FOM center=0.00 gamma polXsec*sqrt(unpolXsec) z=25.00 m

FOM center=0.00 electron polXsec*sqrt(unpolXsec) z=25.00 m

FOM center=0.00 electron polXsec*sqrt(unpolXsec) z=25.00 m

Ideal vs detector segmentation

* Stony Brook University

Ciprian Gal