EMCal for eID

A.Bazilevsky (BNL) For the EIC-YR-Detector-Calorimetry Group EIC-YR-Inclusive DIS Meeting June 2, 2020

Technology selection depends on the space available Several other technologies are under consideration Material in front will affect the resolution e/π : pion suppression depends on the energy, and the energy and momentum resolutions

Inclusive DIS: scattered electron

e+p 18x275 GeV

Mostly scattered in backward (e-going) and barrel Electron energy varies from 0 to e-beam energy in backward (e-going) And to higher energy in barrel and h-going region

Inclusive DIS: background

18x275 GeV

10x100 GeV

Clean measurements at higher momenta Huge background at lower momenta

Background suppression tools

EMCal+Tracking

Different EMCal response to electrons and charged hadrons => E/p cut Different transverse profile of hadronic and EM showers in EMCal

HCal:

Different long. shower profile of hadronic and EM showers => energy back leak of the EMCal (strongly correlated with with the tools above)

Other detectors:

Preshower ToF, mRICH, etc (for lower momenta)

EMCal response to electrons and charged hadrons => E/p cut

h± response in EMCal

Ideal case:

- No material on the way to EMCal
- Perfect EMCal (no gaps/cracks)
- Gaussian response to electron

	PbWO ₄ Crystal (GEANT)	W/SciFi (sPHENIX, GEANT)	PbSc (PHENIX, data)
Depth, X ₀	20	~20	18
$\frac{\sigma_E}{E}$	$\frac{2.5\%}{\sqrt{E}} \oplus 1\%$	$\frac{13\%}{\sqrt{E}} \oplus 3\%$	$\frac{8\%}{\sqrt{E}} \oplus 2\%$
Depth, λ_{I}	0.87	~0.83	0.85
e/h	>2		<1.3

EMCal response to 2 GeV/c π -

E/p > 1 - 1.6 $\cdot \sigma_{\rm EMC}$ to keep $\epsilon_{\rm e}$ =95%

$\pi \pm$ rejection with E/p cut

 $\pi\pm$ rejection \geq \geq \triangleright 10⁴ ε_e=95% PbWO₄ W/SciFi 10³ **Crystal** (sPHENIX, (GEANT) **GEANT**) Depth, X₀ ~20 20 10² $\frac{\sigma_E}{E}$ 13% 2.5% $\overline{\sqrt{E}}$ $\oplus 1\%$ \sqrt{E} Depth, $\lambda_{\rm I}$ ~0.83 0.87 10 e/h >2 Assumes: $\sigma_p \ll \sigma_E$ 1 10 p (GeV/c)

Ideal case:

- No material on the way to EMCal
- Perfect EMCal (no gaps/cracks)
- Gaussian response to electron

. -⊕3%

E/p > 1 - 1.6 $\sigma_{\rm EMC}$ to keep $\varepsilon_{\rm e}$ =95%

PbSc

(PHENIX,

data)

18

 $\frac{1}{\sqrt{E}} \oplus 2\%$

0.85

<1.3

8%

Including momentum resolution

PbWO₄ Crystal (GEANT)

BaBar-based Tracking model: TPC (barrel), Si +GEM (forw) (Fun4All-GEANT4 simulation)

 Δ p/p vs p (GeV/c) 0.1 0.1 0.1 0.05

Transverse profile of hadronic and EM showers in EMCal

Evaluating shower profile

Electron

π-

Well defined shower shape

Broader shape

Very similar to electron shower shape

 E_i^{meas} – measured energy in a tower $E_i^{pred} = E(x_i - x_{CG}, y_i - y_{CG})$ – predicted energy in a tower from electron shower parameterization

 $\sigma_i = \sigma(x_i - x_{CG}, y_i - y_{CG}) - \text{fluctuations in a}$ tower from electron shower parameterization

Profile
$$\chi^2$$
 : electron vs π -

PbWO₄ Crystal (GEANT)

$$\frac{\sigma_E}{E} = \frac{2.5\%}{\sqrt{E}} \oplus 1\%$$

$\pi \pm$ rejection: E/p and profile

Solid: E/p, ε_e =95% Dashed: E/p+Prof, ε_e =92%

Ideal case:

- No material on the way to EMCal
- Perfect EMCal (no gaps/cracks)
- Gaussian response to electron

	PbWO ₄ Crystal (GEANT)	W/SciFi (sPHENIX, GEANT)
Depth, X ₀	20	~20
$\frac{\sigma_E}{E}$	$\frac{2.5\%}{\sqrt{E}} \oplus 1\%$	$\frac{13\%}{\sqrt{E}} \oplus 3\%$
Depth, $\lambda_{\rm I}$	0.87	~0.83
e/h	>2	

So, profile cut provides additional hadron suppression factor of 2-4

Including momentum resolution

PbWO₄ Crystal (GEANT)

 $\frac{\sigma_E}{E} = \frac{2.5\%}{\sqrt{E}} \oplus 1\%$

BaBar-based Tracking model: TPC (barrel), Si +GEM (forw) (Fun4All-GEANT4 simulation)

 Δ p/p vs p (GeV/c) 0.1 0.1 0.1 0.05

DIS: Hadronic Background Suppression

DIS scattered electron purity

Ideal case:

- > No material on the way to EMCal
- Perfect EMCal (no gaps/cracks)
- Gaussian response to electron

Purity = e / (e+h)

18 GeV × 275 GeV:

Clean eID at >2.5 GeV/c (purity > 96%)

DIS scattered electron purity

-3.5<η<-2-2<η<-1-1<η<1
$$\frac{\sigma_E}{E} = \frac{2.5\%}{\sqrt{E}} \oplus 1\%$$
 $\frac{\sigma_E}{E} = \frac{7\%}{\sqrt{E}} \oplus 2\%$ $\frac{\sigma_E}{E} = \frac{12\%}{\sqrt{E}} \oplus 2\%$

- > No material on the way to EMCal
- Perfect EMCal (no gaps/cracks)
- Gaussian response to electron

Purity = e / (e+h)

10 GeV × 100 GeV:

Clean eID at >2GeV/c (purity > 96%)

Scattered electron energy

DIS scattered electron energy (z-axis) vs (Q^2,x)

... Looks like not a big loss if we can not identify electrons at <3 GeV/c?

*Radiation correction will change it a bit

Backup