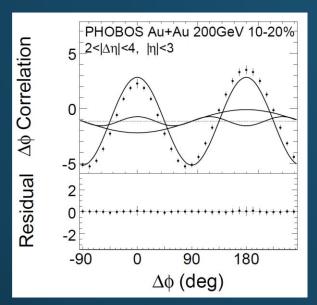
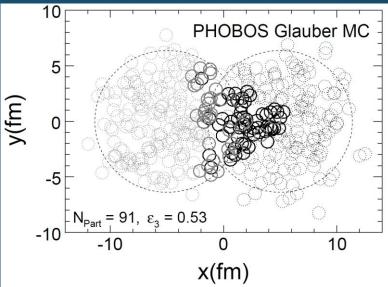


EVENT GENERATION THEORY OVERVIEW

RAINER J FRIES
TEXAS A&M UNIVERSITY

- Monte Carlo Methods
- Modeling of High Energy Nuclear Collisions
- Summary

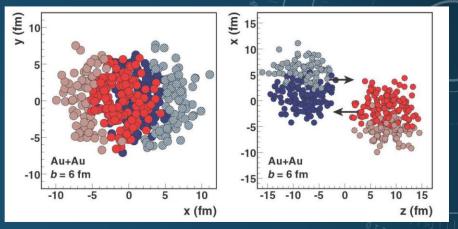

PART I: MONTE CARLO METHODS

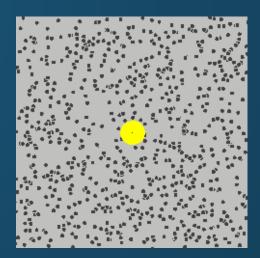

WHY MONTE CARLO EVENT GENERATORS?

- In nuclear and particle physics experimentalists have very little control over initial conditions.
- Most experimental analyses are done by adding events to enhance signals and suppress fluctuations.

Observable
$$\left(\sum_{i} \text{ event } i\right) \neq \sum_{i} \text{ Observable (event } i)$$

 \circ Historic example: triangular flow v_3



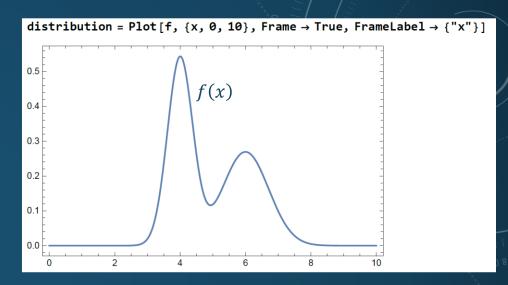

Alver and Roland, PRC 81, 054905 (2010)

WHY MONTE CARLO EVENT GENERATORS?

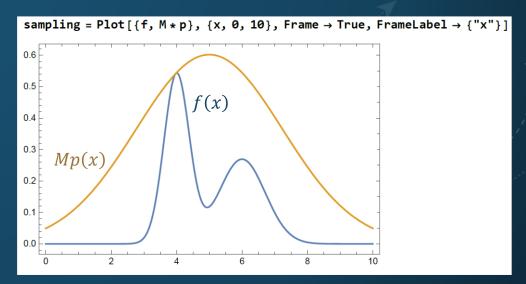
- Initial state fluctuations
 - Impact parameter, orientation of nuclei (if nonspherical)
 - Positions of nucleons at collision, other details of the wave function frozen at collision
- Fluctuations from classical distributions
 - Brownian motion (e.g. heavy quarks)
 - Thermal distributions (e.g. hadrons at freezeout)
- Quantum fluctuations
 - E.g. final state gluon radiation

Miller et al., Ann. Rev. Nuc. Part. Sc. 57, 205 (2007)

EVENT CREATION

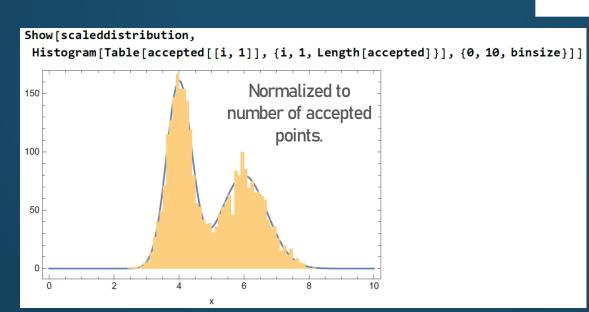

- \circ If the probability distributions of statistical and quantum processes are known, we can sample those to simulate single events \to Accumulate large numbers of events.
- Most processes/modules need Monte Carlo sampling as part of their intrinsic dynamics (e.g. parton shower Monte Carlos)
- Some processes/modules are deterministic (e.g. fluid dynamics) but need sampling to determine initial conditions or final particle output
- Powerful Monte Carlo sampling tools are available to do the job.

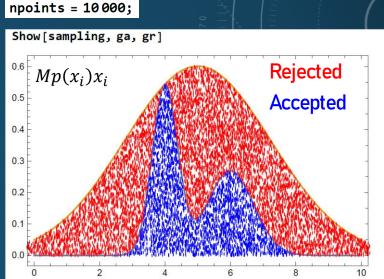
Physics needs to determine the probability distributions.



MONTE CARLO SAMPLING: REJECTION SAMPLING

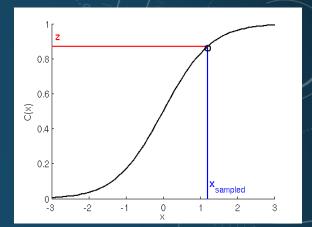
- Rejection Sampling: A simple but effective method for many applications.
- Given a probability distributions f(x) to be sampled in an interval $x \in [a, b]$.
 - Should be positive definite but could have integrable singularities
- O Choose a "proposal" function p(x), will be used as an upper bound for f(x)
 - Should be easily sampleable, e.g. direct sampling, convenient library; a constant function is often okay (but could be wasteful).
- Scaled proposal function Mp(x) where $M = \sup_{x} \frac{f}{p}$ is an optimized upper bound for f(x).

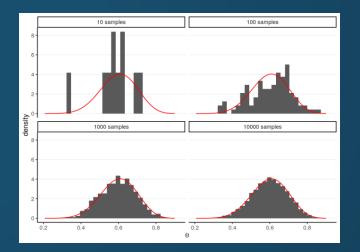



M = MaxValue[
$$\{f/p, x > 0, x < 10\}, x$$
] 0.601856

MONTE CARLO SAMPLING: REJECTION SAMPLING

- Throw dice to determine pairs of numbers (x_i sampled from Mp(x), p_i random number sampled from interval [0,1]).
- o Accept number x_i if $p_i < \frac{f(x_i)}{Mp(x_i)}$.
 - By construction the rhs is always between 0 and 1
- The accepted $\{x_i\}$ represent the original distribution f(x).
- Histogram it:




MONTE CARLO SAMPLING: OTHER METHODS

 Direct sampling using transformations of probability distribution functions.

Markov Chain (MCMC), e.g. Metropolis algorithm

 Second Example: Thermal blast wave cell, using the former two methods

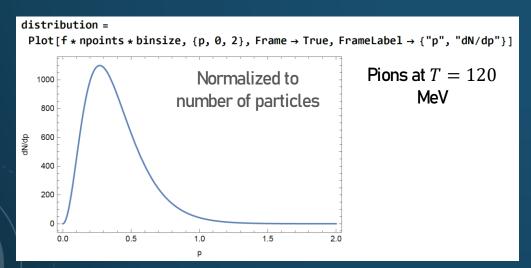
MONTE CARLO SAMPLING: BOOSTED THERMAL DISTRIBUTION

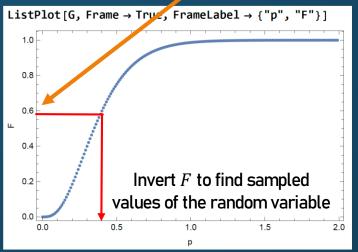
- Heavy ion collisions at late stages have particles moving collectively and close to local thermal equilibrium.
 - For example: freeze-out from fluid dynamics.
 - The particle distribution is a boosted Boltzmann distribution $f(p) \sim e^{-\frac{p \cdot u}{T}}$ where p is the particle 4-momentum, T is temperature and u is the collective 4-velocity. (we neglect quantum corrections and corrections to perfect kinetic equilibrium for simplicity).
- Step 1: transform into the cell rest frame \to distribution $f(\tilde{p})=e^{-\frac{E}{T}}$ acquires spherical symmetry.
 - o Undo by applying Lorentz transformation $p^{\mu} = \Lambda^{\mu}_{\nu}(u)\tilde{p}^{\nu}$ to all particle momenta after rest frame sampling.

MONTE CARLO SAMPLING: BOOSTED THERMAL DISTRIBUTION

Step 2: Factorize rest frame distribution in spherical coordinates:

$$f(\tilde{p}) = \frac{dN}{d^3 \tilde{p}} = \frac{1}{4\pi \tilde{p}^2} \frac{dN}{d\phi} \frac{dN}{d\cos\theta} \frac{dN}{d\tilde{p}}$$

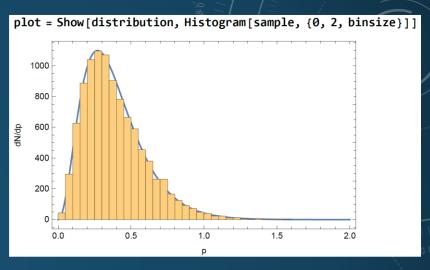

Step 3: Remaining 1-D distributions are simple to sample

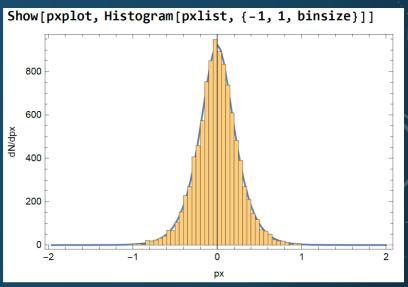

$$\frac{dN}{d\phi} \sim 1 \qquad \frac{dN}{d\cos\theta} \sim 1 \qquad \frac{dN}{d\tilde{p}} \sim \tilde{p}^2 e^{-\frac{\tilde{E}}{T}}$$

 \circ Compute cumulative distribution F(P) of the probability density associated

with $\frac{dN}{d ilde{p}}$

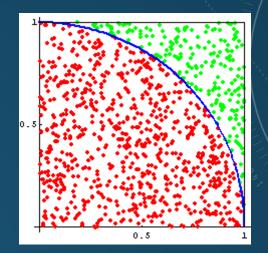
Throw dice in the range [0,1] here





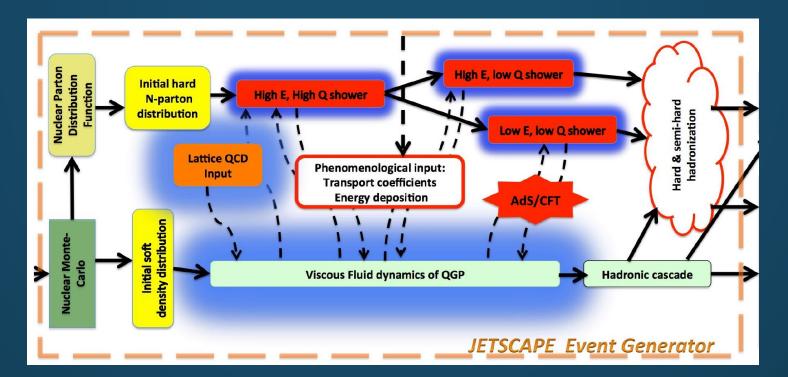
MONTE CARLO SAMPLING: BOOSTED THERMAL DISTRIBUTION

o Inverse transform sampling recovers the original distribution $f(\tilde{p})$.


- Add sampling of the angles to get full momentum vectors.
 - Distribution of the x-momentum, sampled vs analytic.
- Step 4: Restore collective motion by boost.

MONTE CARLO SAMPLING

- Suggested homework problems:
- O Work out π can be determined by sampling a circle or segment of a circle in 2-D. Write a code using Rejection Sampling to compute π .


Write a code to sample 100 thermal pions (m=140 MeV) at a temperature of 120 MeV, with collective velocity v=0.7 c in x-direction.

PART II: MODELING OF NUCLEAR COLLISIONS

HIGH ENERGY NUCLEAR COLLISIONS

There is no comprehensive, self-consistent, QCD based theory for HI collisions $amplitude \sim \langle final\ state | ...\ QCD\ ...\ | nuceus\ 1\ \times nucleus\ 2 \rangle$

 Progress has been made by tackling single aspects of the collision, applying QCD/effective theories/models. JETSCAPE is a tool that allows users to pull these aspects together in unified framework.

HIGH ENERGY NUCLEAR COLLISIONS

 The most important segmentation happens in the initial phase due to the longitudinal momentum of the partons

amplitude
$$\sim \langle final \ state | \dots QCD \dots | nuceus \ 1 \times nucleus \ 2 \rangle$$

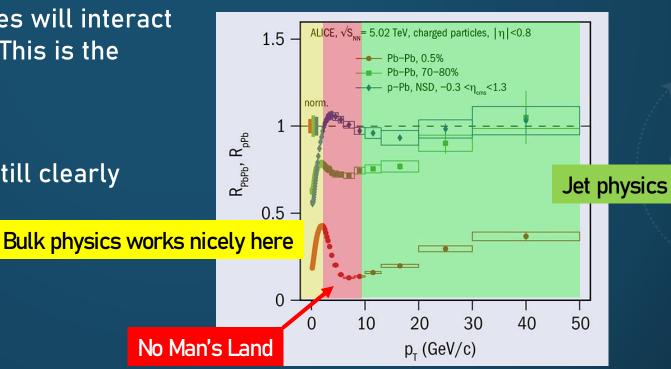
$$\sim \langle final\ state|...\ QCD\ ...\ |\sum_{partons} |partons(\vec{p},s,c)\rangle \langle partons(\vec{p},s,c)|nucleus\ 1\ x\ nucleus\ 2\rangle$$

Bjorken-x:
$$x = \frac{p_z}{p_{\text{nucleon}}}$$

Partons with momenta, spins and color in the two nuclear wave functions

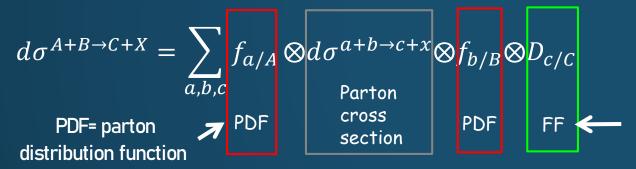
- Rough classification of parton-parton interactions between the two nuclei:
 - \circ Large-x + large-x \to jets and other hard probes (Rare! Need $p_z \gtrsim 1$ GeV).
 - \circ Large-x + small-x \rightarrow single jets at forward/backward rapidities.
 - \circ Small-x + small-x \rightarrow soft interactions, full or partial thermalization, bulk!

HIGH ENERGY NUCLEAR COLLISIONS

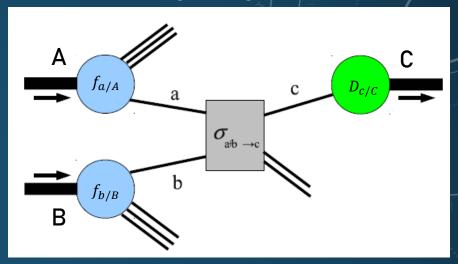

- Rough classification of parton-parton interactions between the two nuclei:
 - \circ Large-x + large-x \rightarrow jets and other hard probes (Rare! Need $p_z \gtrsim 1$ GeV).
 - Large-x + small-x → single jets at forward/backward rapidities.
 - \circ Small-x + small-x \rightarrow soft interactions, full or partial thermalization, bulk!

Low-x partons are plentiful → multiple scattering

JETSCAPE bulk physics


JETSCAPE hard probes

- Of course the different regimes will interact in the subsequent evolution. This is the point of hard "probes".
- However, different domains still clearly visible in data:

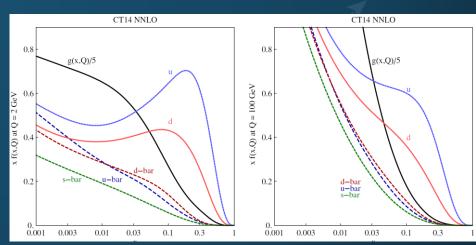


FACTORIZATION, PDFS, PQCD

- High momentum transfer processes:
 - pQCD applicable
 - Factorization theorems to separate universal longdistance behavior from pQCD
- For example, inclusive hadron production in hadronhadron collisions.

Collins, Soper and Sterman, Adv.Ser.Direct.High Energy Phys.5, 1 (1988)

FF= fragmentation function (parton → hadrons)
Universal object


- This is the leading twist contribution, there are corrections of order (Q=large momentum scale) $Q/\Lambda_{\rm QCD}$.
- Monte Carlos for jet and hadron production rely on factorization theorems even if they are not proven in the exclusive case.

PDFS

- Parton distribution functions and fragmentation functions are universal, i.e. process independent.
- O Parton distribution function = probability to find a parton in hadron with a momentum fraction ξ (0 < ξ < 1).
- Pdfs rigorously defined in terms of operators (light cone gauge).

$$f_{q/H}(\xi,\mu) = \int \frac{dy^{-}}{4\pi} e^{-i\xi P^{+}y^{-}} \langle H(P) | \bar{q}(y^{-}) \gamma^{+} q(0) | H(P) \rangle$$

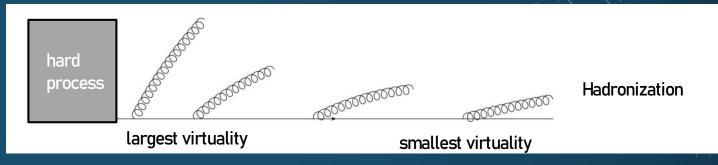
$$f_{g/H}(\xi,\mu) = \frac{1}{\xi P^{+}} \int \frac{dy^{-}}{2\pi} e^{-i\xi P^{+}y^{-}} \langle H(P) | F_{a}^{+\nu}(y^{-}) F_{a\nu}^{+}(0) | H(P) \rangle$$

- Parameterization of pdfs, using observables in e+p and p+p.
- Modifications of pdfs in nuclei compared to free nucleons!

PDFS

ORadiative corrections lead to a scale dependence of pdfs. These are the DGLAP equations with splitting functions $P_{b o a}$ depending on the momentum fraction in the splitting.

$$\frac{\partial f_a(\xi,\mu)}{\partial \ln \mu} = \frac{\alpha_s}{\pi} \int_x^1 \frac{dy}{y} \sum_b P_{b\to a}(y) f_b\left(\frac{\xi}{y},\mu\right)$$

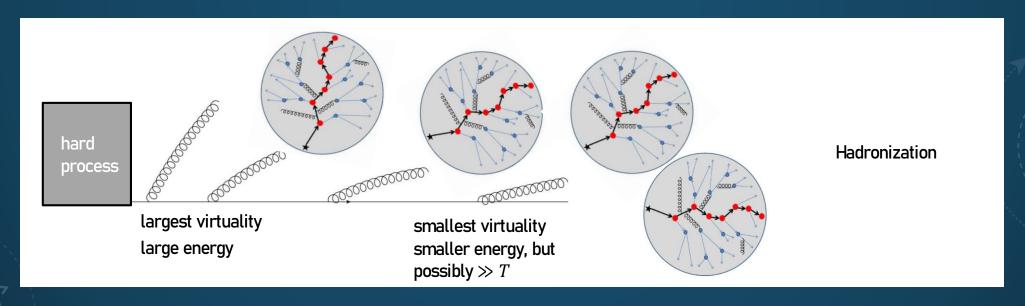

- Fragmentation functions have a similar behavior.
- In event generators, typically pdfs and (hard) parton cross sections are sampled. Initial state radiation and additional parton interactions (e.g. MPIs) may be added.
 - JETSCAPE uses PYTHIA 8 as the default module for these tasks.
 - In A+A collisions (transverse) spatial information on hard processes may be added using the Glauber model.
- Fragmentation functions are rarely used in event generators. They are too "inclusive"

PARTON SHOWER MONTE CARLOS

- Fragmentation functions ~ parton shower + hadronization.
 - MC event generators model this process starting with partons emerging from hard processes

Use DGLAP equations to evolve partons from large virtualities (emerging from the hard

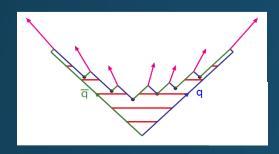
process) to small virtualities.



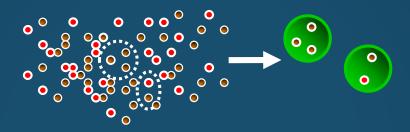
- Need to Monte Carlo the parton splitting.
 - \circ Start with a maximum allowed virtuality $Q_{
 m max}$ from the hard process.
 - \circ Probability with current virtuality Q_i that the next split will be at Q_{i+1} :
 - \circ probability for no split between Q_i that the next split will be at $Q_{i+1} imes$ probability for split at Q_{i+1}

Sudakov form factor
$$S = \exp \left[-\int_{Q_i^2}^{Q_{i+1}^2} \frac{dt}{t} \frac{\alpha_s}{2\pi} \int_{z_-}^{z_+} dz P(z) \right]$$

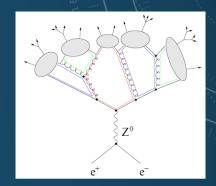
PARTON SHOWER MONTE CARLOS


- So far: evolution in the vacuum, driven by virtuality acquired by the hard process. Parton showers in a QCD medium are modified.
- Modifications to virtuality driven shower: e.g. higher twist formalism used in MATTER (standard parton shower MC in JETSCAPE)
- O Partons at the end of the virtuality evolution could still have a lot of energy \rightarrow parton transport in QGP (e.g. LBT or MARTINI).
 - Additional induced radiation and elastic scattering with medium partons

See talk by Gojko Vujanovic on Friday.


HADRONIZATION

- 3 most relevant models for event generators:
 - Lund string fragmentation


Well tested in e+e- and p+p collisions

Quark recombination

Allows jet and medium partons to interact at hadronization

Cluster hadronization

- JETSCAPE hadronization:
 - Two different Lund string fragementation schemes (colored and colorless)
 - Hybrid hadronization which interpolates between (colored) string fragmentation in dilute systems and recombination in dense systems by sampling the overlap of quarks with hadron wave functions

BULK PHYSICS IN A+A

- Standard modelling for the bulk of A+A collisions:
 - Colliding color glass condensate → glasma
 - Equilibration or hydrodynamization
 - Viscous fluid dynamics
 - Sampling of hadrons and subsequent hadronic transport

In JETSCAPE:

Handled by TRENTO initial state parameterizations

State-of-the-art

> simulations available
(MUSIC, SMASH, ...)

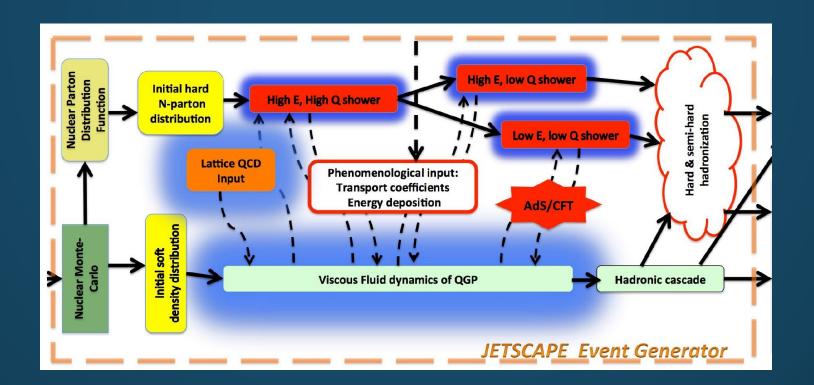
 \circ Modelling close to kinetic equilibrium through macroscopic observables (pressure p, energy density e, collective flow u^μ). Energy momentum tensor

$$T^{\mu\nu} = (e + p + \Pi)u^{\mu}u^{\nu} - (p + \Pi)g^{\mu\nu} + \pi^{\mu\nu}$$

- \circ Viscous fluid dynamics = conservation laws $\partial_\mu T^{\mu
 u}=0$ + constitutive equations for shear and bulk stress.
 - \circ Shear and bulk stress are related to deviations of particle distributions from equilibrium: $f=f_{\rm eq}+\delta f$

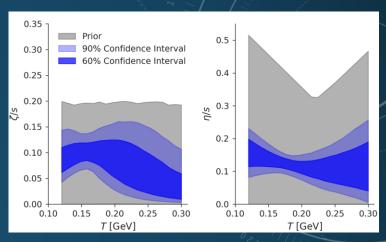
BULK PHYSICS IN A+A

- Bulk simulations provide
 - constraints on important parameters of hot nuclear matter (like the shear viscosity)
 - the background for hard probes; shower Monte Carlos read in the local ambient conditions to model the medium
 - Bulk physics can be affected by probes depositing energy and momentum in the medium.
- See talks and hands-on sessions by Chun Shen and Yasuki Tachibana
- For SMASH: see talk and session by Dmytro Oliinychenko

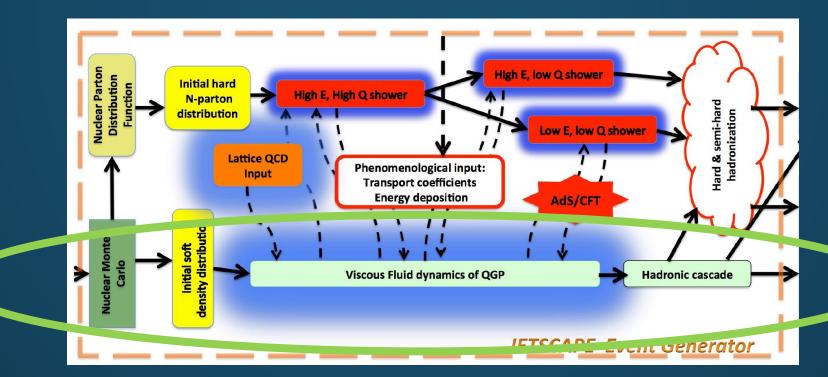

HONORABLE MENTION

- Photons and heavy quarks are historically very important probes.
- JETSCAPE is adding more capabilities, see JETSCAPE talks at HP2020

PART III: SUMMARY

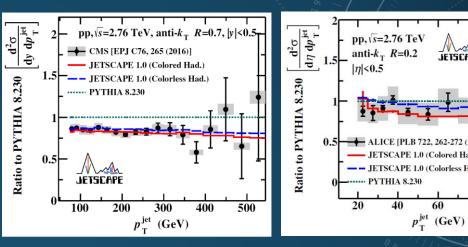

THE JETSCAPE FRAMEWORK

It should now be easy to follow through the JETSCAPE flow chart.

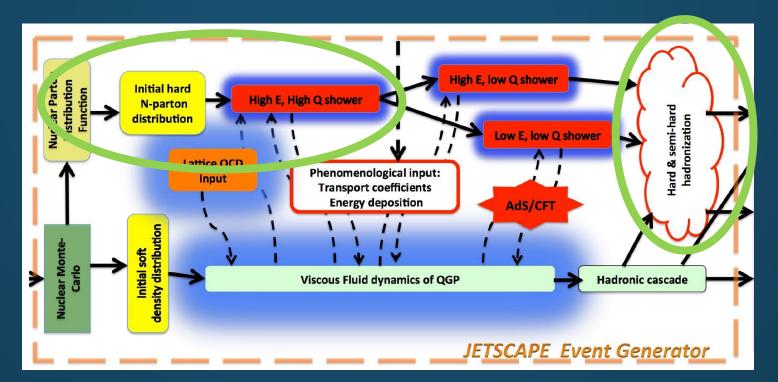


BULK PHYSICS SUMMARY

- State-of-the-art tools
- Comprehensive paper with a bulk analysis in preparation
- Will provide a tuned background for hard probes studies

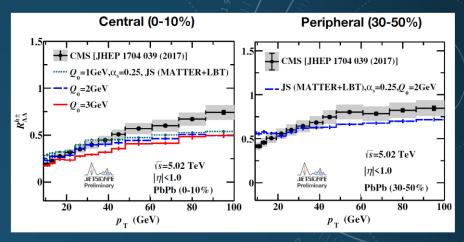


JETSCAPE preliminary @QM 2019

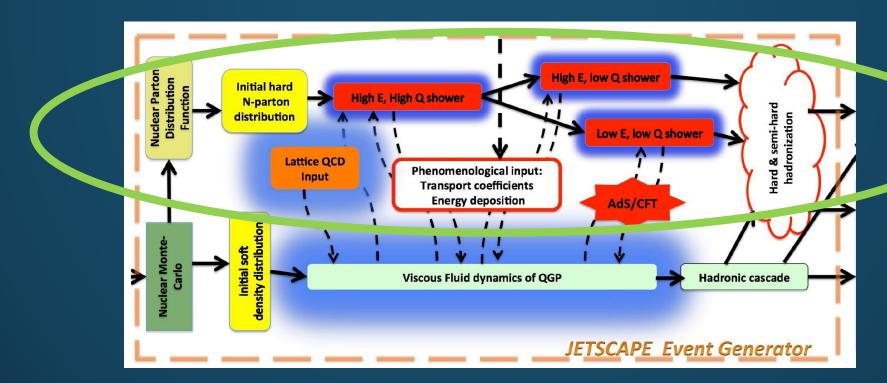


HARD PROBES VACUUM SUMMARY

- Mostly MATTER + string fragmentation
- PP19 tune available, compared to data and PYTHIA 8.



arXiv:1910.05481 [nucl-th]



HARD PROBES A+A SUMMARY

- Several shower MCs/energy loss modules already available, and more can be added.
- Default JETSCAPE configuration: virtuality-driven shower
 MC MATTER + parton transport LBT or MARTINI
- HYBRID strong coupling module available

JETSCAPE preliminary @HP2020

