SMASH hands-on session

Dmytro Oliinychenko JETSCAPE summer school 15-16 July 2020

<u>Goals</u>

- Use SMASH as a hadronic afterburner
- Generate ROOT output of particles and collisions
- By analyzing it learn about chemical and kinetic freeze-out
- (Bonus) Generate SMASH vtk output and look at visualizations of collisions

Start and prerequisites

1. All step by step instructions are on the summer school github

https://github.com/doliinychenko/SummerSchool2020/tree/master/SMASH_session

- 2. Add yourself to the <u>table</u> to track progress
- 3. Are you ready with prerequisites?
 - a. Try

docker start -ai myJetscape

b. Outside of docker environment try

root -l new TBrowser

c. If ROOT is not installed, it's ok, there are alternative instructions for this case

Getting SMASH ready

1. Start the docker environment

docker start -ai myJetscape

2. Compile SMASH

```
cd jetscape-docker/JETSCAPE/external_packages ./get_smash.sh cd smash/smash_code/build make smash -j2
```

3. Try if smash runs

```
./smash --help
./smash --version
./smash
```

Configuring SMASH (1)

Way 1: by config file (by default it's config.yaml)

```
cd JETSCAPE/external_packages/smash/smash_code/build cp config.yaml JETSCAPE_school.yaml ./smash --inputfile JETSCAPE_school.yaml
```

Way 2: command line options override the config options

```
./smash --inputfile JETSCAPE_school.yaml \
--config "General: {End_Time: 40.0}"
```

Configuring SMASH (2): looking inside config file

```
Version: 1.8 # minimal SMASH version to use with this config file
Logging
   default: INFO
General:
   Modus
                   Collider
   Time Step Mode: Fixed
   Delta Time:
                  0.1
   End Time
               200.0
   Randomseed
                  -1
   Nevents
Output:
   Output Interval: 10.0
   Particles:
                       ["Oscar2013"]
       Format:
Modi:
   Collider:
       Projectile:
           Particles: {2212: 79, 2112: 118} #Gold197
       Target:
           Particles: {2212: 79, 2112: 118} #Gold197
       E Kin: 1.23
       Fermi Motion: "frozen"
```

Looking at the output in ASCII format

By default SMASH output will be in the folders data/0, data/1, etc. Open the latest data/* folder and look at the files there.

```
#!OSCAR2013 particle_lists t x y z mass p0 px py pz pdg ID charge
 Units: fm fm fm GeV GeV GeV GeV none none e
 SMASH-1.8
 event 1 out 2115
100 -86.066 20.0817 -43.3986 0.138 1.19694192 -1.05057152 0.26059661 -0.49195004 111 0 0
100 30.3854 -18.1492 85.2682 0.138 0.38667939 0.13206396 -0.05721543 0.33130418 111 1 0
100 78.8696 1.37451 54.5189 0.138 0.60013292 0.47846029 -0.01712481 0.33451161 111 2 0
100 26.5076 54.2063 -78.1123 0.138 0.86598482 0.25917814 0.46049726 -0.67205259 111 3 0
100 -35.7398 4.71614 -90.5283 0.138 0.60341995 -0.21067676 0.00980892 -0.54826155 111 4 0
100 -25.883 -24.7854 -91.94 0.138 1.17842194 -0.29490499 -0.29357803 -1.09383603 111 5 0
100 6.58879 -70.8482 -40.0938 0.138 0.25237496 0.02533322 -0.18771436 -0.09365185 111 6 0
100 56.1153 -51.8371 -39.5174 0.138 0.2641728 0.15208277 -0.12690684 -0.10727886 111 7 0
100 -71.3124 -53.7062 32.7149 0.138 0.89655798 -0.65722592 -0.5181587 0.2904098 111 8 0
100 -13.1515 32.8023 88.8509 0.138 0.51895719 -0.07585658 0.16435041 0.46637677 111 9 0
100 31.687 17.9561 88.6512 0.138 1.60563831 0.64129562 0.33017107 1.42785062 111 10 0
100 4.61924 1.22062 -96.7752 0.138 0.68075515 0.02002094 -0.00538217 -0.66629855 111 11 0
```

Generating output in Root format

config_SMASH_tutorial_collider.yaml

```
Version: 1.8 # minimal SMASH version to use with this config file
Logging:
 default: INFO
General:
 Modus:
                 Collider
 Time_Step_Mode: Fixed
 Delta Time:
 End Time:
                  200.0
 Kandomseed:
                 -1
 Nevents:
Output:
 Output Interval: 10.0
 Particles:
                       ["Oscar2013", "Root"]
     Format:
Modi:
 Collider:
     Projectile:
         Particles: {2212: 79, 2112: 118} #Gold197
     Target:
         Particles: {2212: 79, 2112: 118} #Gold197
     E_Kin: 1.23
     Fermi Motion: "frozen"
```

Run SMASH: ./smash --inputfile config_SMASH_tutorial_collider.yaml

Analyzing the ROOT output

root -l

```
TFile *f=new TFile("data/1/Particles.root"):
TTree *particles=(TTree*)f->Get("particles"):
particles->Scan("*");
particles->Draw("0.5 * log((p0+pz)/(p0-pz))","pdgcode == 2212", "E");
c1->SaveAs("Rapidity_spectrum_protons.png");
particles->Draw("0.5 * log((p0+pz)/(p0-pz))",
                "pdgcode == 211 || pdgcode == 111 || pdgcode == -211", "E");
c1->SaveAs("Rapidity_spectrum_pions.png");
particles->Draw("0.5 * log((p0+pz)/(p0-pz))","pdgcode == 2212", "E");
particles->Draw("0.5 * log((p0+pz)/(p0-pz))",
                "pdqcode == 211 || pdqcode == 111 || pdqcode == -211", "E same");
htemp->SetLineColor(kRed):
c1->SaveAs("Rapidity_spectra_comparison.png");
```

Comparing pion and proton rapidity spectra

Pions, protons (press yes) OR Pions, protons (press no)?

Homework for tomorrow

Install paraview

see instructions at

https://github.com/doliinychenko/SummerSchool2020/tree/master/SMASH_session

Part 2: exploring chemical and kinetic freeze-out

Running SMASH as a hadronic afterburner

Hydrodynamics → Sampler → (I prepared sampled particles from this stage) → Hadronic afterburner

Download sampled particles

Central Au+Au collision at 19.6 GeV, smooth initial condition, MUSIC hydrodynamics, iSS sampler, energy density at particlization 0.26 GeV/fm³.

- Download the SMASH_input_particles_from_MUSIC_hydro.tar.gz, see instructions for the link
- 2. cd JETSCAPE/external_packages/smash/smash_code/build
- 3. tar -xvf SMASH_input_particles_from_MUSIC_hydro.tar.gz
- 4. You should get the file sampled_particles0

Prepare config and run SMASH

```
Version: 1.8 # minimal SMASH version to use with this config
Logging:
   default: INFO
General:
   Modus:
                   List
   End Time:
                   100.0
   Nevents:
   Randomseed:
Output:
   Output_Interval: 100.0
   Particles:
       Format:
                   ["Root"]
       Extended:
                  True
       Only Final: No
   Collisions:
       Format:
                   ["Root"]
       Extended:
                  True
Modi:
   List:
       File_Directory: " "
                       "sampled_particles"
       File_Prefix:
       Shift Id:
```

config_SMASH_tutorial_afterburner.yaml

./smash --inputfile config_SMASH_tutorial_afterburner.yaml

In another tab: run SMASH without collisions

config_SMASH_tutorial_afterburner_no_collisions.yaml

```
Collision_Term:
No_Collisions: True
```

./smash --inputfile config_SMASH_tutorial_afterburner_no_collisions.yaml

Let's discuss what we are doing

- Press yes/no if you know what chemical/kinetic freeze-outs are. Think for 2
 minutes what are the definitions of chemical and kinetic freeze-outs. In 2
 minutes write your definitions in the chat.
- We ran SMASH as an afterburner with and without collisions. What information can we extract from these runs and how? Suggest your ideas. Think for 2 minutes and then post in chat.
 - Bonus: suggest ideas for a paper based on such simulations.
- 3. What can we potentially say about chemical and kinetic freeze-out based on our simulations? Think for 2 minutes, then post.

Analyze the results

You may use some code and ideas from the step by step instructions:

https://github.com/doliinychenko/SummerSchool2020/tree/master/SMASH_session

- 1. How much does the hadronic rescattering change the yields and spectra?
- 2. What can you say by looking at collisions?
- 3. What can you say about chemical freeze-out?
- 4. What can you say about kinetic freeze-out?

Bonus: pretty visualization using paraview

Install paraview -- open source visualization application -- on your computer

(NOT in docker environment)

See my step by step instructions, or just go to paraview.org

Bonus: pretty visualization using paraview

```
Generate VTK output with SMASH:
General:
...
End_Time: 40.0 # 200.0
...
Output:
Output_Interval: 1.0
Particles:
Format: ["Oscar2013", "VTK"]
Only_Final: No
Extended: True
```

Run SMASH, look at the output folder (latest data/*), you should see many .vtk files

Open them with paraview

Bonus: pretty visualization using paraview

- 1. Open vtk files with paraview
- 2. Press large Apply button
- 3. Change Representation: Surface -> 3D Glyphs, Glyph Type: Arrow -> Sphere
- 4. Use the Next Frame and Previous Frame buttons to run movie

Feedback

Have you learned anything from the hands on session, press yes/no. No is also ok!

If yes, write 1-2 things in the chat that you actually learned.