JETSCAPE Framework for Medium Evolution

Initial collision geometry from the T_RENTo model

Weiyao Ke (UCB/LBNL)

The JETSCAPE collaboration is supported by National Science Foundation under Cooperative Agreement ACI-1550300.

1/22

Today's plan:

- 30mins lecture on the TRENTo initial condition model.
- 2h30mins hands-on session on Bayesian analysis using TRENTo prediction as an example

This talk:

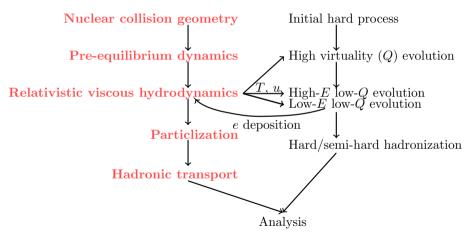
- Review of the medium evolution model in JETSCAPE
- Ingredients of the TRENTo initial condition model
- 3 Event properties at the initial condition level
- 4 Summary
- 5 Warm-up for the hands-on session.

2/22

- Review of the medium evolution model in JETSCAPE
- 2 Ingredients of the TRENTo initial condition model
- 3 Event properties at the initial condition level
- 4 Summary
- Warm-up for the hands-on session.

The JETSCAPE framework for medium evolution in heavy-ion collisions

JETSCAPE¹: modular event generator for **jet** and **medium evolution** in relativistic heavy-ion collision. Develop statistical package to calibrate model parameters.



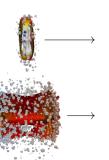
¹http://jetscape.org/

4 D > 4 P > 4 E > 4 E > E 990

Initializing the dynamical evolution of QGP

- Two approaching, Lorentz-contracted, nuclei A and B.
 - ▶ Nucleonic d.o.f. are slow and "freeze" on the collision time scale.
 - ▶ An event-by-event fluctuating nuclear geometry.

- Initial collisions: complicated many-body dynamics, needs modeling.
 - ▶ Simplication: only model energy deposition at $\tau \to 0^+$.
 - ▶ What is the **theoretical uncertainty** of a parametric $\frac{dE_T}{dx_1^2 d\eta_s}$?



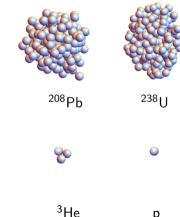
- Early-time dynamics.
 - ► A 3+1D freestreaming model.
 - ► Evolve initial energy density.

- Relativistic viscous hydrodynamics.
 - ▶ Matching energy-momentum tensor from early-time dynamics

- Review of the medium evolution model in JETSCAPE
- 2 Ingredients of the TRENTo initial condition model
- 3 Event properties at the initial condition level
- 4 Summary
- 5 Warm-up for the hands-on session.

4/22

The TRENTo initial condition model²: nuclear configuration



Sample nucleon positions according to the (deformed)
 Woods-Saxon parametrization of heavy nuclei¹,

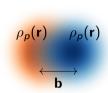
$$\begin{array}{lcl} \frac{dN}{drd\Omega} & \propto & \frac{1}{1+e^{\frac{r-r_0(\theta,\phi))}{a}}}, \\ r_0(\theta,\phi) & = & R(1+\beta_2Y_{20}+\beta_4Y_{40}) \end{array}$$

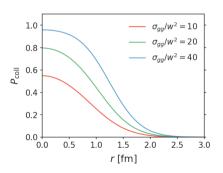
- \triangleright β_2, β_4 nuclear quadruple and hexadecapole moments.
- R: radius parameter.
- a: diffusiveness parameter.
- Sample with minimum nucleon-nucleon distance d_{\min} to mimic short-range repulsion.

 $^{^{1}}$ Atom. Data Nucl. Data Tabl. 36, 495–536 (1987) .For light nuclei like 3 He, one can load configurations from nuclear structure calculation PLB 680, 225–230 (2009).

²http://qcd.phy.duke.edu/trento/index.html

Nucleon profile and pairwise nucleon inelastic collisions





• 3D Gaussian model of proton density, $\mathbf{r} = (x, y)$

$$\rho_p(\mathbf{r}, z) = \frac{e^{-\frac{\mathbf{r}^2 + z^2}{2w^2}}}{(2\pi w)^{3/2}} \xrightarrow{\int dz} \rho_p(\mathbf{r}) = \frac{e^{-\frac{\mathbf{r}^2}{2w^2}}}{2\pi w^2}$$

• Probability of two nucleons to collide depends on the density overlap $T_{pp}(b)$, b is the impact parameter.

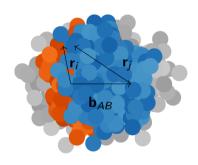
$$T_{pp}(b) = \int \rho_p(\mathbf{r} - \mathbf{b}/2)\rho_p(\mathbf{r} + \mathbf{b}/2)d\mathbf{r}^2$$

 $P_{\text{coll}}(b) = 1 - \exp\{-\sigma_{gg}T_{pp}(b)\}$

• σ_{gg} : an effective opacity parameter tuned to reproduce the pp inelastic cross-section at given beam energy (\sqrt{s})

$$\sigma_{\mathrm{inel}}(\sqrt{s}) = \int P_{\mathrm{coll}}(b; \sigma_{gg}(\sqrt{s})) db^2 \rightarrow \frac{\sigma_{gg}}{w^2} = f\left(\frac{\sigma_{NN}}{w^2}\right)$$

Participants and binary collisions

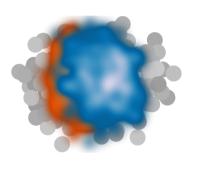


• Check each pair of nucleons (i,j) from the two collision nuclei A and B separated by impact-parameter b_{AB} ,

Collision criterion: sample
$$P_{\text{coll}}(b = |\mathbf{r}_j - \mathbf{b}_{AB} - \mathbf{r}_i|)$$

• Participants: nucleons suffer at least one inelastic collision.

Participants and binary collisions



• Check each pair of nucleons (i,j) from the two collision nuclei A and B separated by impact-parameter b_{AB} ,

Collision criterion: sample
$$P_{\text{coll}}(b = |\mathbf{r}_j - \mathbf{b}_{AB} - \mathbf{r}_i|)$$

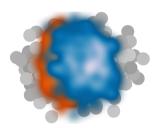
- Participants: nucleons suffer at least one inelastic collision.
- Smoothed participant density:

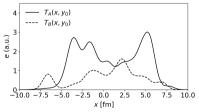
$$T_{A \text{ or } B}(\mathbf{r}) = \sum_{i \in \text{Part. } A \text{ or } B} \gamma_i \rho_p(\mathbf{r} - \mathbf{r}_i)$$

• γ_i draw from Γ distribution $\sim \gamma^{k-1} e^{-k\gamma}$. Important to simulate huge multiplicity fluctuation in pp collisions.

(ロト 4回 ト 4 至 ト 4 回 ト 4 回 P 4 回 P

Energy density production at mid-rapidity





• Energy density deposition at mid-rapidity is assumed to be a local function of participant densities:

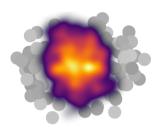
$$\frac{dE_T}{dx_{\perp}^2 d\eta_s}(x_{\perp}, \eta_s = 0) = \text{Norm} \times f(T_A(x_{\perp}), T_B(x_{\perp}))$$

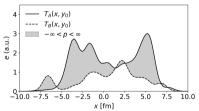
• A particular parametric form of f is used in TRENTo

$$f(T_A, T_B) = \left(\frac{T_A^p + T_B^p}{2}\right)^{1/p}$$

known as "generalized mean" ansatz.

Energy density production at mid-rapidity





 Energy density deposition at mid-rapidity is assumed to be a local function of participant densities:

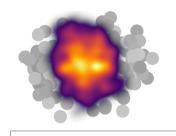
$$\frac{dE_T}{dx_{\perp}^2 d\eta_s}(x_{\perp}, \eta_s = 0) = \text{Norm} \times f(T_A(x_{\perp}), T_B(x_{\perp}))$$

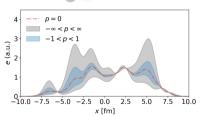
• A particular parametric form of *f* is used in TRENTo

$$\left(\frac{T_A^p + T_B^p}{2}\right)^{1/p} = \begin{cases} \max\{T_A, T_B\}, & p \to \infty \\ \frac{T_A + T_B}{2}, & p = 1 \\ \sqrt{T_A T_B}, & p = 0 \\ \frac{2T_A T_B}{T_A + T_B}, & p = -1 \\ \min\{T_A, T_B\}, & p \to -\infty \end{cases}$$

p: a model DoF to be constrained by data.

Energy density production at mid-rapidity (II)





 Energy density deposition at mid-rapidity is assumed to be a local function of participant densities:

$$\frac{dE_T}{dx_{\perp}^2 d\eta_s}(x_{\perp}, \eta_s = 0) = \text{Norm} \times f(T_A(x_{\perp}), T_B(x_{\perp}))$$

• A particular parametric form of *f* is used in TRENTo

$$\left(\frac{T_A^p + T_B^p}{2}\right)^{1/p} = \begin{cases} \max\{T_A, T_B\}, & p \to \infty \\ \frac{T_A + T_B}{2}, & p = 1 \\ \sqrt{T_A T_B}, & p = 0 \\ \frac{2T_A T_B}{T_A + T_B}, & p = -1 \\ \min\{T_A, T_B\}, & p \to -\infty \end{cases}$$

p: a model DoF to be constrained by data.

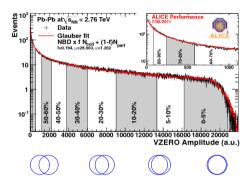
- Review of the medium evolution model in JETSCAPE
- 2 Ingredients of the TRENTo initial condition model
- 3 Event properties at the initial condition level
- 4 Summary
- Warm-up for the hands-on session.

Properties of initial conditions

- Impact-parameter: b.
- ullet Number of participants: $N_{
 m part}$ nucleons that suffers at least one inelastic collisions.
- Number of binary collisions: N_{coll} the total number inelastic collisions.
- ullet Total transverse energy: $dE_T/d\eta_s$ transverse summed energy per unit space-time rapidity.
- Eccentricity: $\epsilon_n e^{in\phi_n}$

None of the above are observables, even though some are strongly correlated with final-state properties.

Centrality definition



Centrality is an approximate indicator of geometry in AA collisions.

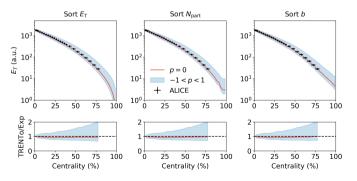
- Experimentally, one sorts the events according to how strong the detector responses to a collisions (# of particles, energy deposition in detector ...).
- Ideally, we should define centrality as close to experiments as possible, e.g, final-state charged particle multiplicity after the dynamical evolution¹.
- Initial condition can also used to estimate centrality approximately:
 Initial energy deposition strongly correlates with final-state energy / multiplicity.

¹This definition is used in JETSCAPE medium calibration (in preparation).

Total transverse energy: centrality dependence in AA

Different way of defining centrality at the level of initial condition:

- 1. Sort events by $dE/d\eta_s$. Nucleon position, collision, and Γ -fluctuation (more realistic).
- 2. Sort events by $N_{\rm part}$. Nucleon position + collision fluctuations.
- 3. Sort events by *b*. Least fluctuation (less realistic).

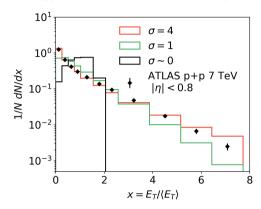


 E_T v.s. different centrality are similar in AA except for peripheral events.

Other observables can be sensitive to how you define centrality event in central collisions!

ALICE: PRC 94 (2016) 034903

Energy deposition in small system: pp



ATLAS: JHEP11(2012)033

$$\gamma_i \sim \gamma^{k-1} e^{-k\gamma}$$

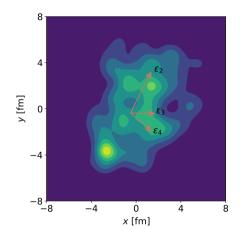
$$\sigma^2 \equiv \frac{1}{k} : \text{variance of } \Gamma \text{ fluctuation}$$

• Proton-proton collision produces huge total transverse energy E_T fluctuation.

$$E_T = \sum_{|\eta_i| < 0.8} e_{T,i}$$

- TRENTo mimics part of the fluctuation by proton-proton geometry and the Γ fluctuation.
- Collision geometry does not explain the distribution. Dominated by the Γ fluctuation we put in.

Initial spatial eccentricity



 Finally state anisotropic flow are linear (+non-linear) responses of the hydrodynamic evolution to the initial spatial eccentricity¹.

$$v_n \propto c_n \times \epsilon_n + \cdots$$

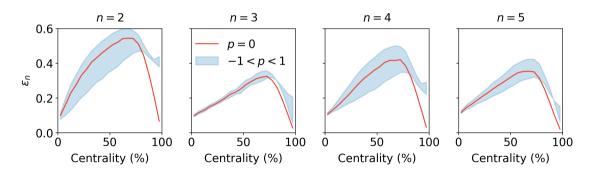
• In TRENTo, eccentricity is defined with energy density distribution e(x, y).

$$\epsilon_n e^{in\phi_n} = \frac{\int er^n e^{in\phi} dx dy}{\int er^n dx dy}$$

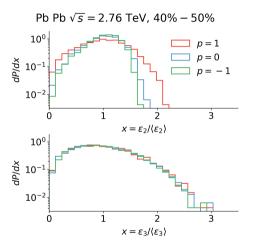
 $^{^{1}}$ The coefficients c_{n} also depends on transport coefficients, centrality, ...

Eccentricity

- The way energy production depends on participant density strongly affects the magnitude of initial spatial eccentricity.
- Notable initial condition uncertainty on the magnitude of anisotropic flow.



Eccentricity (II)



- It may not be too meaningful to look at the absolute magnitude of ϵ_n in initial condition.
- Linear reponses $v_n \sim c_n \epsilon_n + \cdots$ with unknown coefficients.
- The shape of the event-by-event distribution is more directly related to initial conditions, $x=\epsilon_n/\langle\epsilon_n\rangle$
- In 40-50% centrality, ϵ_2 distribution is sensitive to the energy deposition ansatz (*p*-parameter).

15 / 22

- Review of the medium evolution model in JETSCAPE
- 2 Ingredients of the TRENTo initial condition model
- Event properties at the initial condition level
- 4 Summary
- Warm-up for the hands-on session.

Summary

- The soft sector initial condition in JETSCAPE uses a parametric model TRENTo.
- Initial condition is big source of uncertainty for understanding soft-sector evolution quantitatively from data. TRENTo parametrizes
 - ▶ a class of energy deposition relation $e = f(T_A, T_B)$ at mid-rapidity.
 - proton compactness through the width parameter.
 - variation in energy production fluctuation.
- We have seen these unconstrained DoF of initial condition affects
 - total energy v.s centrality.
 - centrality selection.
 - magnitude of spatial eccentricity.
- These uncertainties should be propagated to the extraction of interested physical parameters such as η/s and ζ/s .

- Review of the medium evolution model in JETSCAPE
- 2 Ingredients of the TRENTo initial condition model
- Event properties at the initial condition level
- 4 Summary
- 5 Warm-up for the hands-on session.

Bayes' parameter extraction

The problem:

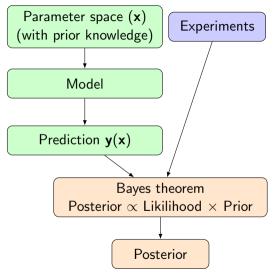
- 1. Given a model \mathcal{M} : compute quantities \mathbf{y} with input parameters \mathbf{x} .
- 2. Given a prior belief of \mathbf{x}' true value's distribution $P_0(\mathbf{x}_{\text{true}})$
- 3. Given observations \mathbf{y}_{exp} .
- !! Ask for the updated probability distribution of \mathbf{x}_{true} : $P(\mathbf{x}_{\text{true}})$.

Bayes' theorem:
$$\underbrace{P(\mathbf{x}_{\text{true}}|\mathcal{M}, \mathbf{y}_{\text{exp}})}_{\text{Posterior}} = \underbrace{\frac{P_L(\mathbf{y}_{\text{exp}}|\mathcal{M}, \mathbf{x}_{\text{true}})}{P_L(\mathbf{x})P_0(\mathbf{x})d\mathbf{x}}}_{\text{Normalization (evidence)}}$$

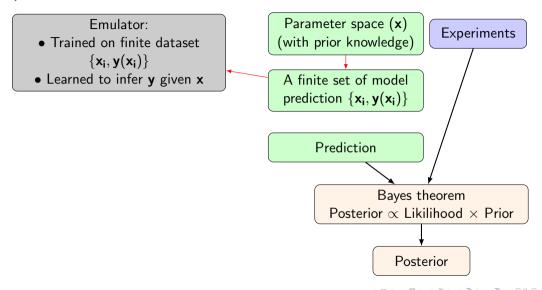
Often the form P_L is unknown. Commonly assumed to take the form:

$$\ln P_L = C - \frac{1}{2} \Delta \mathbf{y} \Sigma^{-1} \Delta \mathbf{y}^T, \quad \Delta \mathbf{y} = \mathbf{y}_{\mathsf{exp}} - \mathbf{y}(\mathbf{x}; \mathcal{M}), \quad \Sigma : \text{Contains uncertainties}$$

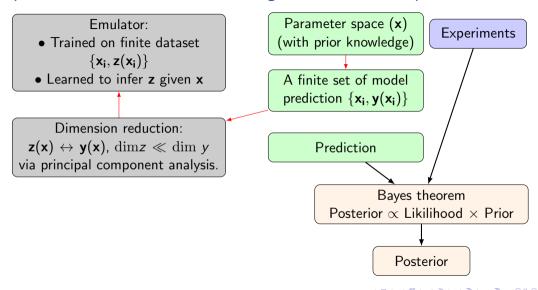
For simple models:



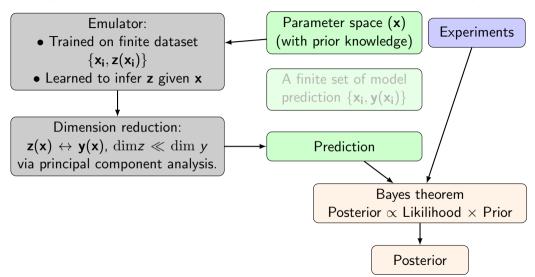
For computational intensive models:



For computational intensive models + high-dimensional output



Finally, the workflow of the emulator-assisted Bayesian analysis



Hands-on exercises for Bayesian model calibration:

We will have

- An exercise on Gaussian process emulator (1D input and 1D output).
- An exercises on principal component analysis to get familiar with dimensional reduction.
- Applying the above flow chart to a real problem: "Fitting" initial condition parameter by comparing initial condition prediction directly to a selection of experimental data.

Backup: TRENTo installation (standalone)

- Language: c++
- Dependence: boost, hdf5, gsl, c++11
- Download:
 - $\$ git clone https://github.com/Duke-QCD/trento.git
- Build and install (default path \$HOME/.local)
 - \$ mkdir build && cd build
 - \$ cmake ..
 - \$ make install
- Usage
 - \$ trento [options] projectile target [number-events = 1]

Backup: TRENTo usage (standalone)

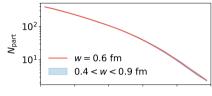
Example: generate 3 "minimum bias" Pb+Pb collisions.

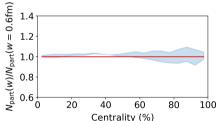
trento Pb Pb 3

A subset of options:

- Nuclei: p, d, Cu, Xe, Au, Pb, U
- Nuclear configuration:
 - "-w": width [fm] of the Gaussian shape of the proton $\frac{1}{2\pi w^2}e^{-r^2/(2w^2)}$.
 - ▶ "-d": minimum nucleon distance [fm], short-range repulsion.
 - "-k": nucleonic fluctuation. Unit-mean Γ distribution, with variance $\sigma = 1/k^2$.
- Collision
 - "-x": set $\sigma_{pp}^{\rm inel}$ [fm²], \sim 4.2 fm² @200 GeV, 6.4 fm²@2.76 TeV, 7.0 fm² @ 5 TeV.
 - ▶ "--ncoll": compute binary collision number (slow down the program a little).
- Energy deposition
 - "-p": set the p value in energy deposition ansatz $\sim (T_A^p + T_B^p)^{1/p}$.

Bonus: Number of participants





- Number of participants is rather insensitive to the size of proton.
- Probability for a nucleon "i" to be a participant depends on the overlap of the proton density and the thickness of the whole other nuclei T_{pA} .

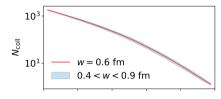
$$egin{align} 1 - \prod_{j} (1 - P_{ ext{coll}}(b_{ij})) &= 1 - e^{-\sigma_{ ext{\scriptsize gg}} \sum_{j} T_{ ext{\scriptsize pp}}(b_{ij})} \ &pprox \quad 1 - \exp\left\{-\# f(rac{\sigma_{ ext{\scriptsize NN}}}{w^2}) w^2 T_{ ext{\scriptsize pA}}
ight\} \end{split}$$

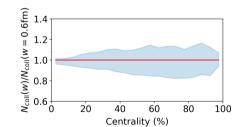
• For large nuclei, a different nucleon width only affects this probability at the boundary, so $N_{\rm part}$ is not sensitive to w.

Weivao Ke

22 / 22

Bonus: Number of binary collisions





- Number of binary collisions: a measure of # of hard process (tiny fraction of the inelastic collision) in AA collisions.
- It is determined by T_{pp} ,

$$N_{\text{coll}} = \left\langle \sum_{i \in A, j \in B} \left(1 - e^{-\frac{1}{4\pi} f\left(\frac{\sigma_{NN}}{w^2}\right) e^{-\frac{b_{ij}^2}{4w^2}}} \right) \right\rangle$$

• Sensitive to proton-proton overlap, and therefore sensitive to nucleon width parameter w.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ■ めの@