Backward-angle u-Channel π^{0} Production Update

Wenliang (Bill) Li
on behalf of
Justin Stevens, Garth Huber, Bernard Pire*, Lech Szymanowski*, Kirill
Semenov-Tian-Shansky*

4/June/2020

Outline

- Last pre-full simulation feasibility update
- Answers to some questions:
- Will photon reach ZDC and where?
- Rough detection efficiency
- Detector constrains
- Physics background (to our best knowledge)
- Lund files for the simulation is ready to go

Photons at the ZDC (Before Pavia meeting)

U-channel Meson Production Setup

From Pavia Meeting

Central Integration - Beam Pipe

U-channel Meson Production (After Pavia Meeting)

DVCS simulation with deuterium, spectating neutron distribution on ZDC, from Alex

π^{0} momentum vector

Impact to the efficiency

- Double photon efficiency for the nominal π^{0} event is larger than 20\%
- Detector (magnetic aperture) constrains:
- Fixing center of the neutral particle at ZDC
- Ensuring largest possible symmetrical acceptance

Physics background (to our current best knowledge)

- Double photon case:
- Primary reaction: e+p-> e' $+p^{\prime}+\pi^{0}$
2γ hit parttern
- Ideal expected trigger: e'+p'+2 γ
- Physics background: none
- Less than ideal trigger: e'+2 γ
- Background: $\Lambda->n+\pi^{0}$
$40 \mathrm{GeV} / \mathrm{c} \boldsymbol{\pi}^{0}$
4.5 mrad acceptance

- Single photon case:
- Primary reaction: e+p-> $e^{\prime}+p^{\prime}+\pi^{0}$
- Ideal expected trigger: $e^{\prime}+p^{\prime}+\gamma$
- Physis background: DVCS, eta, $\wedge->n+\pi^{0}$
- Less than ideal trigger: e'+ γ
- Background: many many possibility
2γ hit parttern
$60 \mathrm{GeV} / \mathrm{c} \pi^{0}$
4.5 mrad acceptance
- We can use the double photon event to normalize the single photon events

Conclusion

- U-channel π^{0} (2gamma) will be on ZDC at specific location and we conclude it is possible to reconstruct this reaction.
- Full simulation will provide further detail including realistic efficiency, PID, signal/background estimation, etc.
- Lund file for both pi0 and two-photon scenario are ready to go
- For detector experts to study acceptance
- PID study (myself)

Question and Discussion

- How ready is fast-smear and full simulation for the tagging detector to perform photon/neutron PID study?
- Small angle proton detection, complications?
- Backward π^{0} is just the beginning
- Study on u-channel η, ω, π^{+}is in the plan (not inclued in YR)
- Our currently knowledge of u-channel physics in the DIS region almost none
■ Unknown W dependence (EIC possible)
- Unknown x_{B} dependence (EIC +12 GeV possible)
- Unclear -t dependence (EIC possible, but required significant modification to ZDC, bigger ZDC)

- L/T Separation possibility? (Need more study)
- More and more u-channel data will come out of 12 GeV , on all meson production channels
- Would be there a universality (t-channel and u-channel) effort in the EIC era?

Thank you

Advertisement:

- The first u-channel physics workshop will be held at JLab in September 21-22.
- Event page: https://www.jlab.org/conference/BACKANGLE
- Indico page: https://www.jlab.org/indico/event/375

Photons at the ZDC

Kinematics table

$\left.\begin{array}{cccccccccccccc}\hline \begin{array}{c}Q^{2} \\ \left(\mathrm{GeV}^{2}\right)\end{array} & \begin{array}{c}W \\ (\mathrm{GeV})\end{array} & x_{\mathrm{B}} & \begin{array}{c}\theta_{e^{\prime}} \\ (\mathrm{deg})\end{array} & \eta_{e^{\prime}} & \begin{array}{c}P_{e^{\prime}} \\ (\mathrm{GeV})\end{array} & \begin{array}{c}\theta_{p^{\prime}} \\ (\mathrm{deg})\end{array} & \begin{array}{c}\eta_{p^{\prime}} \\ \\ 6.2\end{array} & 3.19 & 152 & -1.39 & 5.31 & -1.84 & 4.13 \\ (\mathrm{GeV})\end{array} \begin{array}{c}P_{p^{\prime}} \\ (\mathrm{deg})\end{array}\right)$

Validation of TDA or u-channel factorization scheme

- EIC L/T separation ability is unclear
- Initial phase to study TDA at EIC: studying scaling
- Low hanging fruit
- Advance phase: Single Spin Asymmetry and Double spin Asymmetry
- Two Postulation:
- $1 / Q^{8}$ scaling behavior

○ $\sigma_{T}>\sigma_{L}, \sigma_{L} \sim 0$

- Verified with all meson production channel

- $\quad \sigma_{T}>\sigma_{L}$ will be tested at 12 GeV

Upcoming PAC 48 proposal

Others: parasitic data may be available

Simplest case 1: pi0 at 50 mrad (along p incidence angle)

$$
\mathrm{s}=10 \mathrm{GeV}^{2}, \mathrm{~W}=3.13 \mathrm{GeV}, \mathrm{Q}^{2}=6.2 \mathrm{GeV}^{2},
$$

Q^{2} (space-like) and q^{2} (time-like) Scaling

The PANDA Collabration, Eur. Phys. J. A (2015) 51: 107

Same TDAs for PANDA and EIC, the ultimate universality check

Far-Forward hadron detection

- Neutron detection in a 20 mrad cone down to 0°

- Excellent acceptance for all ion fragments
- Recoil proton acceptance:
$-0<\boldsymbol{\theta}<10 \mathrm{mrad}$ for $\left|P^{\prime}-P_{0}\right|>(0.05 \%) P_{0}$ 100\% DVES acceptance for $x_{B}>0.005$
- $2<\boldsymbol{\theta}<\mathbf{1 0} \mathrm{mrad}$ for all P^{\prime}
$-0.3 P_{0}<\left(Z / Z^{\prime}\right) P_{0}<\infty$

Detection

JLab LDRD
proposal
pending
FY2014

- Momentum resolution $<3 \cdot 10^{-4}$ Beam energy spread

- π^{0} acceptance into the foward tagging detector should be similar to recoiled neutron:
- Maximum: 20 mrad cone down to 0 deg
- π^{0} momentum ?
- Resolution needed to resolve the $\boldsymbol{\pi}^{0}$-> 2 gamma?

Backward-angle structure of Proton

- Complete description of Nucleon:
- GPD = Hadron tomography of the proton
- TDA = tomography of partonic distributions in the nucleon --> meson and vice versa transitions probed in the backward angle kinematics
- Two Postulation of TDA:
- $1 / Q^{8}$ scaling behavior
- $\boldsymbol{\sigma}_{T}>\boldsymbol{\sigma}_{L}, \boldsymbol{\sigma}_{L} \sim 0$
$\mathrm{s}=10 \mathrm{GeV}^{2}, \pi^{0} \mathrm{u}$-Channel Production

Higher momentum is better

- $\mathrm{Q}^{2}=6.2 \mathrm{GeV}, \pi^{0}$ momentum $=56.29 \mathrm{GeV}$
- Minimum two photon separation: $\sim 15 \mathrm{~cm}$
- Separation distribution max: 16 cm

Next step

- Photon study PID study (from neutron) in fast smear and and full EIC simulation
- Awaits for the physics TDA model/calculation from Bernard, Lech and Kirill
- Similar backward angle studies on
- η (planning)
- ω (in progress)
- π^{+}(speculating)

Backward-angle structure of Proton

- Complete description of Nucleon
- GPD = Hadron tomography of the proton
- TDA = tomography of partonic distributions in the nucleon --> meson and vice versa transitions probed in the backward angle kinematics

η decay on ZDC

- $s=10 \mathrm{GeV}^{2}, \mathrm{Q}^{2}=10 \mathrm{GeV}^{2}, \eta$ momentum $=42 \mathrm{GeV}$
- Impossible for ZDC with $60 \mathrm{~cm} \times 60 \mathrm{~cm}$ size at 32 m
- Still worth studying as it contribute to single photon background
- Possibility for end-cap detector? Need to study, same of for ω

In this Update

- Kinematics changed to focus on $Q^{2}<10 \mathrm{GeV}^{2}$
- Corrected and adjusted
- Proton incidence angle 50 mrad-> 25 mrad
- Pi0 constrained to +-10 mrad from proton incidence angle
- Photon detection in ZDC
- Position and angle expectation
- Question to experts and convenors

Question to experts and convenors

- Are there any plot to generate to demonstrate kinematics coverage?
- Plots to show detector constraints.

Backup

Kinematics Table

$\left.\begin{array}{cccccccccccccc}\hline \begin{array}{c}Q^{2} \\ \left(\mathrm{GeV}^{2}\right)\end{array} & \begin{array}{c}W \\ (\mathrm{GeV})\end{array} & x_{\mathrm{B}} & \begin{array}{c}\theta_{e^{\prime}} \\ (\mathrm{deg})\end{array} & \eta_{e^{\prime}} & \begin{array}{c}P_{e^{\prime}} \\ (\mathrm{GeV})\end{array} & \begin{array}{c}\theta_{p^{\prime}} \\ (\mathrm{deg})\end{array} & \begin{array}{c}\eta_{p^{\prime}} \\ \hline 6.0\end{array} & 3.19 & & & & & \\ P_{p^{\prime}} \\ (\mathrm{GeV})\end{array} \begin{array}{c}\theta_{\pi^{0}} \\ (\mathrm{deg})\end{array} \begin{array}{c}\eta_{\pi^{0}}\end{array} \begin{array}{c}P_{\pi^{0}} \\ (\mathrm{GeV})\end{array} \begin{array}{c}-t \\ \left(\mathrm{GeV}^{2}\right)\end{array} \begin{array}{c}-u \\ \left(\mathrm{GeV}^{2}\right)\end{array}\right)$

In this Update

- Short information on the backward-angle (u-channal) meson production
- U-channel piO production in EIC
- Where particles go?
- Kinematics
- Produced pi0 momentum distribution
- Our plan and timeline

Short update on the backward-angle Π^{0} Production

Bill and Bernard on behalf of backward meson production group

- Bill merged the EIC exclusive charged pion production generator into a C++ coding platform
- Bill is now working on this platform to make it more general (by separating the physics section of the code and make it modular)
- The same platform could be used for other processes (such as backward-angle DVCS) in the EIC
- Justin Stevens will give an update on our progress at the Temple meeting in March
. Any question or interested in helping, contact Bill: billlee@jlab.org

Simplest case: pi0 at 20 mrad

$$
\mathrm{s}=10 \mathrm{GeV}^{2}, \mathrm{~W}=3.13 \mathrm{GeV}, \mathrm{Q}^{2}=18.05 \mathrm{GeV}^{2},
$$

Simplest case: pi0 at 10 mrad

$$
\mathrm{s}=10 \mathrm{GeV}^{2}, \mathrm{~W}=3.13 \mathrm{GeV}, \mathrm{Q}^{2}=18.05 \mathrm{GeV}^{2},
$$

$$
\begin{aligned}
-\mathrm{t} & =19.33 \mathrm{GeV}^{2} \\
-\mathrm{u} & =7.09 \mathrm{GeV}^{2}
\end{aligned}
$$

Simplest case 2: pi0 at 35 mrad (15 mrad from p incidence angle)

$$
\mathrm{s}=10 \mathrm{GeV}^{2}, \mathrm{~W}=3.13 \mathrm{GeV}, \mathrm{Q}^{2}=18.05 \mathrm{GeV}^{2},
$$

Q^{2} (space-like) and q^{2} (time-like) Scaling

The PANDA Collabration, Eur. Phys. J. A (2015) 51: 107

Same TDAs for PANDA and EIC, the ultimate universality check

Detecting a $20-50 \mathrm{GeV}$ pi0

- At 20-50 GeV, $\pi^{0}->2$ gamma decay angle (between two photon) is 0.8-0.4 degree.
- Best way to detect $\boldsymbol{\pi}^{0}$ at neutro $\sin \theta_{\max }=\frac{m_{\pi}}{2 E_{\gamma}}$ we need to insert lead to slow down $\boldsymbol{\pi}^{0}$? Resolution needed to distinguish pIU trom single photon DVCS events?
- Simulation is needed to answer these questions
- Some feedbacks and suggestions from experts:
- Abhay: PHENIX central arm, 5 meters from IR. pi0->2photon separation at about 20 GeV . Our calorimeter granularity 2.7 cm square facing the IR.
- Elke: In Star, ECal at 7 m and separate pi0 up to 60 gev
- Preshower to the calorimeter?

Far-Forward hadron detection

- Neutron detection in a 20 mrad cone down to 0°

- Excellent acceptance for all ion fragments
- Recoil proton acceptance:
$-\quad 0<\boldsymbol{\theta}<\mathbf{1 0} \mathrm{mrad}$ for $\left|P^{\prime}-\boldsymbol{P}_{0}\right|>(0.05 \%) P_{0}$ 100\% DVES acceptance for $x_{B}>0.005$
- $2<\boldsymbol{\theta}<\mathbf{1 0} \mathrm{mrad}$ for all \boldsymbol{P}^{\prime}
$-0.3 P_{0}<\left(Z / Z^{\prime}\right) P_{0}<\infty$
Detection
JLab LDRD
proposal
pending
FY2014
- Momentum resolution $<3 \cdot 10^{-4}$ Beam energy spread

