NLO QCD predictions for dijet photoproduction in lepton-nucleus scattering at the EIC, LHeC, HE-LHeC, and FCC

V. Guzey (PNPI-Gatchina, Russia), and M. Klasen (Munster, Germany)

arXiv:2003.09129

Objectives:

- Calculate cross sections using NLO pQCD and nCTEQ15 and EPPS16 nPDFs
- Predictions for dijet average $ho_{ au}$, η , observed momentum fraction of nucleus (x_A^{obs}) and photon (x_{V}^{obs})
- Compare kinematic reach of the four colliders

Goal:

Dijet photoproduction in e+A collisions can considerably reduce the current uncertainties of nPDFs.

Introduction

- Many e+A colliders approved (EIC) and planned (LHeC, HE-LHeC, FCC)
- HERA experience: photoproduction of jets and dijets provides useful complimentary information on the (mostly gluon) structure of hadrons
- LHC experience: dijet photoproduction in Pb-Pb UPCs reduces existing uncertainty in nPDFs at small x by factor ~2
- \circ The c.o.m. energy increase from the EIC to LHeC and beyond extends the coverage in all four variables (p_T, η , x_A^{obs} , x_γ^{obs})
- \circ LHeC, HE-LHeC will probe the dijet cross section down to $x_A^{obs} < 10^{-4}$ (10^{-5} at FCC) \rightarrow 2 (3) orders smaller than at EIC

Formalism

o In the framework of collinear factorization and NLO pQCD, the cross section of dijet photoproduction is

$$d\sigma(eA \to e + 2jets + X) = \sum_{a,b} \int dy \int dx_{\gamma} \int dx_{A} f_{\gamma/e}(y) f_{a/\gamma}(x_{\gamma}, \mu^{2}) f_{b/B}(x_{A}, \mu^{2}) d\hat{\sigma}(ab \to jets)$$

- a, b: parton flavors
- $f_{\gamma/e}(y)$: flux of equivalent photons of the electron, depending on photon light-cone momentum fraction y
- $f_{a/\nu}(x_{\nu}, \mu^2)$: is the PDF of the photon for the resolved photon case, μ is the factorization scale
- $f_{b/B}(x_A, \mu^2)$: is the nPDF
- dijet cross section has contributions:
 - resolved photon (photon interacts with target partons through its quark-gluon structure)
 - <u>direct photon</u> (photon enters directly the hard scattering cross section)
- \circ **At NLO:** separation btw. Resolved and direct photon contrib. depends on factorization scheme and scale μ
 - direct photon dominates the cross section at $x_{\gamma} \approx 1$
- Weizsacker-Williams approximation used for the photon flux of the electron

$$f_{\gamma/e}(y) = \frac{\alpha}{2\pi} \left[\frac{1 + (1 - y)^2}{y} \ln \frac{Q_{\text{max}}^2 (1 - y)}{m_e^2 y^2} + 2m_e^2 y \left(\frac{1}{Q_{\text{max}}^2} - \frac{1 - y}{m_e^2 y^2} \right) \right]$$

- HERA experience: take $Q_{max}^2 = 0.1 \, \mathrm{GeV^2}$, inelasticity 0 < y < 1
- Photon PDFs (GRV HO parametrization); nPDFs (nCTEQ15 and EPPS16 parametrizations)

Analysis

- \circ Anti-k_T algorithm with a jet radius of R = 0.4 (at most two partons in the jet)
- Following generic conditions on final-state jets:
 - Leading jet $p_{T,1} > 5$ GeV;
 - other jets $p_{T,i\neq 1} > 4.5$ GeV to avoid an enhanced sensitivity to soft radiation
 - all jets have rapidities $|\eta_{1,2}| < 4$.
- In pQCD beyond LO, light-cone momentum fractions not directly measurable
 - \rightarrow Estimated, using the two highest transverse-energy jets ($p_{T1} > p_{T2}$):

$$x_{\gamma}^{\text{obs}} = \frac{p_{T,1}e^{-\eta_1} + p_{T,2}e^{-\eta_2}}{2yE_e},$$

$$x_A^{\text{obs}} = \frac{p_{T,1}e^{\eta_1} + p_{T,2}e^{\eta_2}}{2E_A},$$

	E_e , GeV	E_A , TeV	\sqrt{s} , GeV
EIC	21	0.1	92
LHeC	60	2.76	812
HE-LHeC	60	4.93	1,088
FCC	60	19.7	2,174

iets + X nb/GeV 10⁵ 10⁴ do/dη, $d\sigma/dp_{T}$, 10³ 10² 10 10¹ 10⁰ 10⁰ 10^{-1} 10^{-1} 20 30 $p_{\mathtt{T}}$, GeV η 10¹⁰ 108 10 $^{\mathrm{u}}$ $d\sigma/dx_A^{obs}$, dσ/dx_γ 10⁶ 10⁴ 10³ 10² 10² 10⁰ 10¹ 10-2 10^{-4} 10^{-3} 10⁻¹ 10⁻³ 10-2 10^{-1} 10^{-5} $\mathbf{x}_{\mathtt{A}}^{\mathtt{obs}}$ $x_{\gamma}^{\text{ obs}}$

FIG. 1: NLO QCD predictions for the dijet photoproduction cross section in $eA \rightarrow e + 2 \text{jets} + X$ electron–nucleus scattering at the EIC, LHeC, HE-LHeC, and FCC as a function of the average dijet transverse momentum \bar{p}_T , the average rapidity $\bar{\eta}$, and the momentum fractions x_A^{obs} and x_γ^{obs} . The calculation uses nCTEQ15 nPDFs.

Predictions - xsec

- collision energy dramatically expands the kinematic coverage
- At the LHeC, HE-LHeC, and FCC, one probes the dijet cross cross section in the wider ranges

Predictions - nPDFs

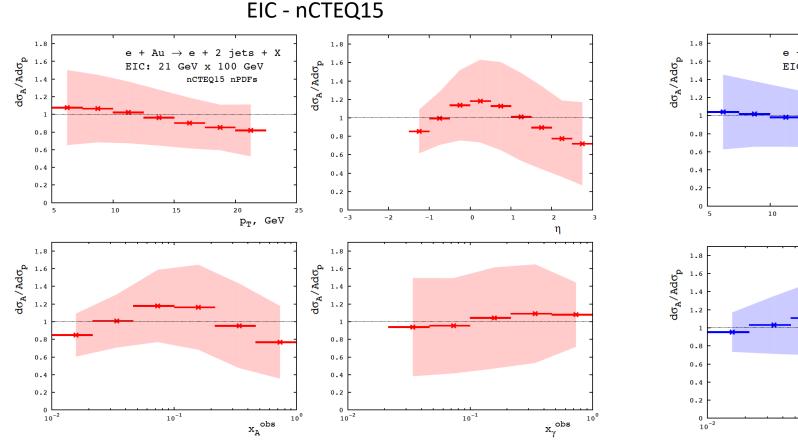


FIG. 2: NLO QCD predictions for the ratio of the cross sections of dijet photoproduction on nuclei and the proton as a function of \bar{p}_T , $\bar{\eta}$, $x_A^{\rm obs}$, and $x_\gamma^{\rm obs}$ in the EIC kinematics. The calculation uses central values of nCTEQ15 nPDFs (solid lines) and 32 sets of error PDFs (shaded band).

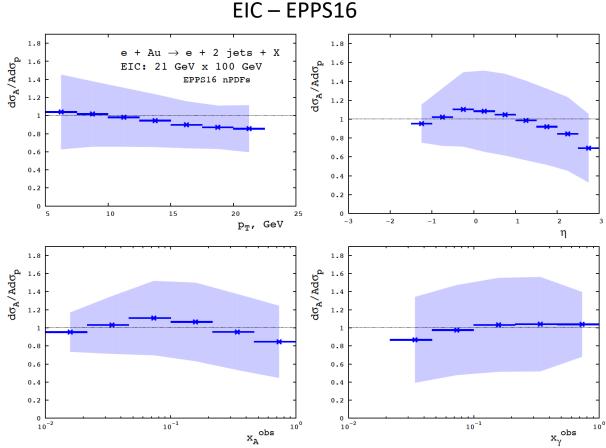
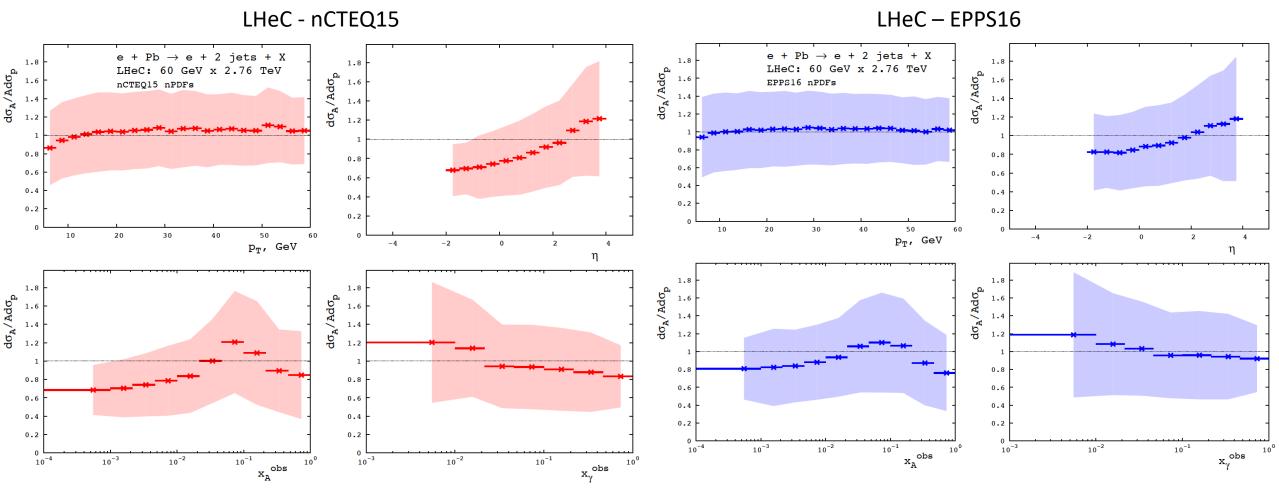



FIG. 3: NLO QCD predictions for the ratio of the cross sections of dijet photoproduction on nuclei and the proton as a function of \bar{p}_T , $\bar{\eta}$, x_A^{obs} , and x_{γ}^{obs} in the EIC kinematics. The calculation uses central values of EPPS16 nPDFs (solid lines) and 40 sets of error PDFs (shaded band).

❖ Magnitude of nuclear modifications of the dijet cross section is ~10–20% and is smaller than the the current theoretical uncertainties of nCTEQ15 and EPPS16 nPDFs

Predictions - nPDFs

Results for the HE-LHeC and FCC closely resemble those for the LHeC

- ❖ Nuclear modifications are more pronounced in the kinematics of LHeC (HE-LHeC, FCC) so that the predicted nuclear suppression is compatible with the uncertainty band due to nPDFs.
- LHeC extends the coverage on $x_A^{obs} \approx 10^{-4}$ significantly enounces sensitivity to nuclear modifications of nPDFs at small x

Conclusions

- Calculated the cross section of inclusive dijet photoproduction in e+A at future lepton-nucleus colliders as EIC, LHeC, HE-LHeC, and FCC using NLO pQCD and nCTEQ15 and EPPS16 nPDFs
- \circ Made predictions for the cross section distributions as functions of the dijet p_T, η , x_A^{obs} , x_γ^{obs}
- Found that an increase of the collision energy from the EIC to the LHeC and beyond extends the coverage in all four considered variables
- \circ Calculated the ratio of the dijet cross sections on a nucleus and the proton, $\sigma_A/(A\sigma_p)$, and showed that it exhibits clear nuclear modifications
- ο Found that in the important case of the x_A^{obs} dependence, the shape of $\sigma_A/(A\sigma_p)$ repeats that of $g_A/(Ag_p)$ and reveals a strong suppression due to nuclear shadowing for $x_A^{obs} < 0.01$
 - This indicates that measurements of the cross section of dijets photoproduction at future e+A colliders will be very beneficial to reduce current uncertainties of nPDFs