GEM based Transition Radiation detector/ tracker

Yulia Furletova on behalf of GEMTRD eRD22 group

Outline

- > Physics motivation
- Intro into TRD
- > Test beam setup
- > Analysis
- > Conclusions

- Jefferson Lab:
 - ✓ Howard Fenker
 - ✓ Yulia Furletova
 - ✓ Sergey Furletov
 - ✓ Lubomir Pentchev
 - ✓ Beni Zihlmann
 - ✓ Chris Stanislav
 - ✓ Fernando Barbosa
- > University of Virginia
 - ✓ Kondo Gnanvo
 - ✓ Nilanga K. Liyanage
- Temple University
 Matt Posik
 - ✓ Bernd Surrow

Electron identification (e/hadron separation)

Electron/hadron separation

- The main detector for e/hadron separation is a Calorimeter. Also dE/dx in tracking detectors, as well as Cherenkov detectors could be used in the limited momentum range.
- > TRD offers high e/h rejection for electrons in 1-100 GeV range

Hadron end-cap
between dRICH and EMCAL (extra tracking point)

Transition Radiation

• Transition radiation is produced by a charged particles when they cross the interface of two media of different dielectric constants

Figure 2: Electron microscope images of a polymethacrylimide foam (Rohacell HF71)(left) and a typical polypropylene fiber radiator (average diameter $\approx 25 \ \mu m$) (right) [52].

- the probability to emit one TR photon per boundary is of order $\alpha \sim 1/137$. Therefore multilayer dielectric radiators are used to increase the transition radiation yield, typically few hundreds of mylar foils.
- TR in X-ray region is extremely forward peaked within an angle of $1/\gamma$
- Energy of TR photons are in X-ray region (2 40 keV)
- Total TR Energy (E_{TR}) is proportional to the γ factor of the charged yB PID meeting

How easy to detect Transition Radiation?

- Stack of radiators and detectors (sandwich)
- For "classical" TRD (straws, MWPC) gas with high Z is required for better absorption of TR photons: Xenon gas (Z=54)
- TRDs are not "hadron-blind" ! they see all charged particles dE/dx
- Several methods exist to identify TR photons on the top of dE/dx:

(TR photons (5-30 keV) over a dE/dX background in Xe gas (2-3 keV)).

Pulse height

cm Xe)

5

- Discrimination by threshold (ATLAS)
- Average pulse height along adjacent pads (or along a track) (ALICE) => (next slide)

GEM as Transition Radiation detector and tracker for EIC (eRD22)

- > High resolution tracker.
- > Low material budget detector
- > How to convert GEM tracker to TRD:
 - Change gas mixture from Argon to Xenon
 (TRD uses a heavy gas for efficient absorption of X-rays)
 - \checkmark Increase drift region up to 2-3 cm (for the same reason).
 - ✓ Add a radiator in the front of each chamber (radiator thickness ~5-10cm)
 - ✓ Number of layers depends on needs: Single layer could provide e/pi rejection at level of 10 with a reasonable electron efficiency.

GEM - TRD/T prototype @ UVA

10x10 cm²

Resistive Divider = 7.404 M Ω , Max current = 747.3 μ A

TR absorption

New transition radiation detection technique based on DEPFET silicon pixel matrices

https://doi.org/10.1016/j.nima.2010.06.342

JuliaFurletova, SergeyFurletov

New interface board

- compatible with JLAB Flash-ADC system
- Each board holds 10 preamplifiers, each preamplifier connects to 24 GEM strips resulting on a readout of 240 GEM strips per each readout board or X/Y coordinate.
- A pre-amplifier has GAS-II ASIC chips (3 chips per each preamplifier card) and provides 2.6 mV/fC amplification. A preamplifier has a peaking time of 10 ns. It consumes 50 mWatt/channel and has a noise <0.3 fC. The dynamic range of preamplifiers (where it is linear) is about 200 fC.
- Cover $5^{/2}$ up to 2.4 (32) μ s of a drift time.

HV, GARFIELD and MAGBOLTZ simulation

HV divider for GEM-TRD with Gaps 21-2-2-2,

Total divider = 16.3 $M\Omega$

- Amplification divider = $9.3 \text{ M}\Omega$
- Drift divider = $7 M\Omega$

Xe-CO2 1n Hall D \Rightarrow Operating voltage HV = 6500 V

- HV drift region = (6500 V × 7) / 16.3= 2790 V
- Electric field in the drift = 1.33 kV/cm

6.5 kV for Xe-CO2, the field in the drift region is 1.33 kV/cm

C.A.E.N. N	1470 4	Ch HV Po	wer Suppl	y V3.0	12 L	ocalBus A	Address: () Coi	nnected by	USB Local P/	ort: / dev/t	tyUSBO	X	-
١	/Set (V)	ISet (uA)	VMon (V) I	Mon (uA)	Power	Status	Trip	Maxv (V)	RDWn (V/	s) RUp (V/s)	PWDn	Polarity	IMon Range	
Chan OQ	0.0	780.00	1.0	0.00	Off	DIS	0.0	7850	500	500	KILL	-]	
Chan 01	4950.0	400.00	4950.0	309.10	On	ON	20.0	6500	500	200	KILL	-]	
Chan 02	0.0	380.00	0.0	0.00	Off	DIS	10.0	7500	500	500	KILL	-]	
Chan 03	10.0	780.00	0.0	0.00	Off	OFF	10.0	4100	500	500	KILL	-	1	
Internal 9	Supply <mark>Ol</mark>	K HV CI	ock (200K	Hz] Over	Power	NO Inter	rlock Acti	ve CLOSE	Local	Bus Termina	tion <mark>OFF</mark>	_ Control M	odeREMOTE	

Drift velocity vs E

Sergey Furletov

- > 3-6 GeV electrons in Hall-D from pair spectrometer
- > In parallel with Hall-D MW-TRD (FDC) system
- covered $\frac{1}{2}$ of the sensitive area with radiator (mimicking pion beam)
- > Test with Ar/CO_2 and Xe/CO_2 mixtures
- Different radiators

Only e produce TR photons (E>1GeV) Pions only start to produce TR at E > 100-150 GeV

Charge as a function of drift distance

Fleece radiator: Random oriented Polypropylene fivers (20µm)

Fleece

radiator

no radiator

×10⁶

charge, 7

60

50

40

30

20

10

0<u>⊾</u>

120

drift time, 8ns samples

140

100

Regular foils: ~200 polypropylene foils (~13 μ m thick) with spacers (~180 μ m) made from nylon net

40

60

80

20

GEANT4: electron and pion comparison

Soft TR-photons:

- > absorbs near entrance window, therefore have large drift time
- > sensitive to dead volumes, like Xe-gap, cathode material.
- Increase of radiator thickness does not lead to increase of number of soft-photons (radiator self-absorption)

Hard TR-photons:

- Depending on energy of TR-photons, could escape detection (depends on detection length)
- > Increase of radiator leads to increase of hard TR-spectra.

Separation/Identification of TR-clusters and dE/dx clusters

Signals from GEMTRD using FlashADC125

e/π rejectrion

Detector	Dead material in front	Radiator	e/π	$e/e_{no\ radiator}$	$DATA_{e/e_{noR}}$
$20 \mathrm{~mm}$	no dead material	$20~{ m cm}$	14.4	6.3	
$20 \mathrm{~mm}$	400 μm Xe, Kapton 75 μm	$20~{ m cm}$	12.5	5.38	
$20 \mathrm{~mm}$	as above	$5~{ m cm}$	2.94	1.37	
$20 \mathrm{~mm}$	as above	$9~\mathrm{cm}$	5.07	1.97	1.8
$20 \mathrm{~mm}$	as above	$15~{ m cm}$	8.0	3.94	
$20 \mathrm{~mm}$	as above	$26~{ m cm}$	16.0	6.3	
$20 \mathrm{~mm}$	as above	$29~{ m cm}$	16.1	6.66	
$29 \mathrm{~mm}$	400 μm Xe, Kapton 75 μm	$15~{ m cm}$	11.5	4.22	
$25 \mathrm{~mm}$	as above	$15~{ m cm}$	11.55	4.62	
$15 \mathrm{~mm}$	as above	$15 \mathrm{cm}$	7.54	3.33	
$10 \mathrm{~mm}$	as above	$15~{ m cm}$	4.01	1.97	
$5 \mathrm{mm}$	as above	$15~{ m cm}$	1.96	1.38	

 Table 1: Rejection factor corresponding to 90% of electron efficiency

 e/π rejection (MC and Data)

TR radiator scan

GEMTRD/T provides a tack segment ($\mu TPC \ mode$)

GEMTRD test setup with GlueX

- Motivation:
- To check for real e/pi rejection (detector response on pions)
- Also important for DIRC (precise tracking in front of the detector)

Setup: 5 tracking detectors
 Counting from the target:
 Standard GEM, uRWELL, TRD Multi wire chamber (TRD-MW),
 GEM-TRD, Standard GEM plane.

Yulia Furletova

GEMTRD setup at the GlueX experiment

Integration into GlueX experiment

Machine learning technique on FPGA

On-line particle identification:

- ✓ move a part of an off-line reconstruction software into online (FPGA).
- ✓ This is a collaborative effort with Hall-D (GlueX) experiment and ODU (engineering department)
- ✓ Could be applied for single detector as well as for GLOBAL PID (dE/dx, Cherenkov det, calorimeters, TOF, TRD...)

Step1.

-> Optimize software on computer,

-> Compare with other likelihood methods

-> adopt this technique for a possible use within the FPGA

Step2. FPGA (VIRTEX) ordered (expecting delivery in January)

Step3. Code algorithm for FPGA

Conferences

A new Transition Radiation detector based on GEM technology https://doi.org/10.1016/j.nima.2019.162356

YB PID meeting

6/5/20

٠

YB PID meeting

Conclusions

• Very challenging!