EIC-ZDC

Far-Forward and IR Integration YR meeting
Yuji Goto (RIKEN)

June 15th, 2020

EIC Detector R&D Proposal

- Submitted on May 29, 2020
 - "Developing a High Resolution ZDC for EIC"
- Soft photon detection
 - Detector & acceptance simulation
- EM and hadron calorimeter
 - Detector simulation
 - Calibration scheme
 - (ALICE-FoCal R&D by RIKEN)
 - (LHC-ZDC R&D by Kansas Univ.
- Radiation hardness
 - Simulation study
 - Radiation test

Performance requirements and resources requested

Detector R&D	Physics	Performance	Resource	Support &
		requirements	requested	collaboration
Soft photon	e+A nuclear	$E_{\gamma} \leq 300 \text{ MeV}$	detector	This proposal
detection	breakup veto		simulation	Calorimeter consortium
		acceptance	acceptance	This proposal
			simulation	BeAGLE group
		detector	detector R&D	N/A in FY21
		technology		
EM + hadron	e+A collision	neutron	high resolution	BeAGLE group
calorimeter	geometry	multiplicity	not necessary	
	spectator	energy &	detector	This proposal
	tagging	position	simulation	
		resolution		
	meson	neutron & Λ	detector	This proposal
	structure	acceptance	simulation	Meson structure WG
		detector	FoCal R&D	RIKEN
		technology	LHC-ZDC R&D	Kansas Univ.
		calibration	design &	This proposal
		scheme	simulation	
			system test	N/A in FY21
Radiation		radiation dose	simulation study	This proposal
hardness				Kobe Univ.
)		detector	radiation test	This proposal
'		technology		Calorimeter consortium

Table 1: Table of performance requirements.

June 15, 2020

Soft photon detection

- Photons from nuclear excitation
 - Necessary to identify coherence of the collision
 - Collaboration with BeAGLE group (eRD17)
- Large (as large as possible) aperture
 - Only 20% of such decay photons are detectable in the ZDC aperture of 4.5 mrad
 - Second IR design will allow a larger ZDC acceptance
- Full absorption calorimeter
 - With good enough energy resolution
 - e.g. crystal scintillator (LYSO, PWO, ...)
 - Collaboration with the calorimeter consortium (eRD1)

EM and hadron calorimeter

- Acceptance
 - 60 x 60 cm² for vetoing spectator neutrons from nuclear breakup
- Energy, position, and p_T resolution
 - Hadron energy resolution < 50% / √E (GeV) ⊕ constant term
 - Sufficient longitudinal size of 10 interaction length
 - Sufficient transverse size of 2 interaction length
 - to avoid leakage for good hadron energy resolution

EM and hadron calorimeter

EM calorimeter

- ALICE-FoCal-E
 - Si + W sampling calorimeter
- Longitudinal segmentation
- Low granularity layers (Si-pad) for energy measurement
- High granularity layers (Si-pixel) for accurate position information

Hadron calorimeter

- Energy resolution < 50% / √E (GeV) ⊕ constant term
- Angular resolution < 3 mrad / \sqrt{E} (GeV)
- ALICE-FoCal-H
 - Pb + Scintillator (spaghetti design)
 - No final design yet
- LHC-ZDC
 - Quartz fiber with traditional scintillators

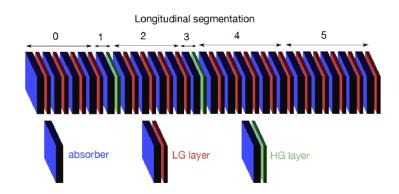


Figure 2: Schematic of the FoCal electromagnetic calorimeter. The blue absorber is tungsten, the red low grantularity silcon layers are used for energy measurement while the green high granularity layers give precise position information [3].

Radiation hardness

- Estimated to be ~100K-1M Gy or n_{eq} ~10¹⁴⁻¹⁵ for 1-year operation of e+p collisions or 10¹⁵⁻¹⁶ for lifetime
 - More simulation study to be performed
 - Beam-gas rate, ...
- Plastic sceintillator is an attractive option for good e/h or hadron energy resolution
 - e.g. PEN may stand for > 0.1 MGy radiation
- Calibration contribute to constant term of the energy resolution
 - Expected to be 3%
 - Spoiled by channel-by-channel variation changing by radiation damage

Simulation studies

- ALICE FoCal-E on the g4e framework
- Hadron calorimeter to be added
 - LHC-ZDC w/ fused silica Cerenkov fibers

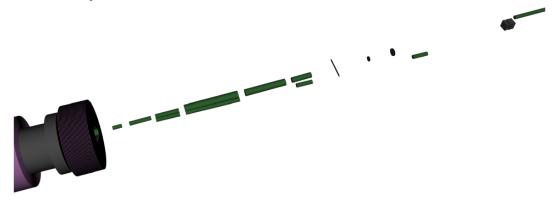


Figure 5: Schematic view of the forward region of the EIC showing the central detector, magnets, the off momentum detectors, Roman Pots and the ZDC.

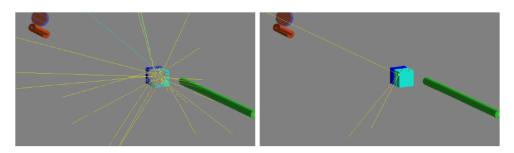


Figure 6: Event displays for (Left) a 20 GeV neutron and (Right) a 500 MeV photon impinging upon the ZDC

June 15, 2020