

Gain Calibration

Cosmic ray muons can be used to measure gain without the need for placing radioisotopes inside the cryo-system, allowing gain to be monitored in-situ.

Energy is deposited stochastically, but with a mostprobable amplitude per unit length given by the Landau distribution.

By fitting this energy deposition spectrum an absolute gain measurement can be made.

CCD Characterisation with Cosmic Rays

Merlin Fisher-Levine, Andrei Nomerotski

Brookhaven National Lab, Upton, NY 11973

PSF Measurement

A cosmic ray will deposit energy over a very small crosssectional area. By examining the evolution of the width of the track as a function of energy deposition depth in the sensor, the PSF and charge diffusion can be measured.

coefficient.

Edge Distortion

Cosmic ray muon tracks are very straight. Lateral field effects and edge distortions can therefore be probed by looking at the deviation from a perfect straight line with respect to position on the sensor.

DECam sensor >11 pixel deflection umn charge centroid Centroid distance from straight track

negligible track bending on all sensor sides.

Acknowledgements

Paul O'Connor & Ivan Kotov for the datasets, Robert Lupton & Paul *Price* for their help with DMStack

Plotting the distance from the column's charge centroid to the track for LSST sensors shows

This analysis is a work in progress. A comparison of LSST and DECam sensor performance will follow.