Characterising CCDs with Cosmic Rays

Merlin Fisher–Levine

December 2014

Outline

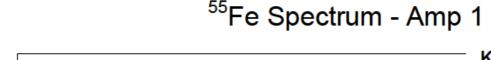
- Introducing cosmic rays
 - Cosmic ray properties
 - Energy deposition & the Landau distribution
 - What measurements do the properties of cosmic rays allows?
 - Gain
 - Measuring CCD gain with darks
 - Comparison with ⁵⁵Fe results
 - PSF
 - Measuring PSF and diffusion with cosmics
 - Edge Effects
 - Examining track bending at sensor edges with cosmics

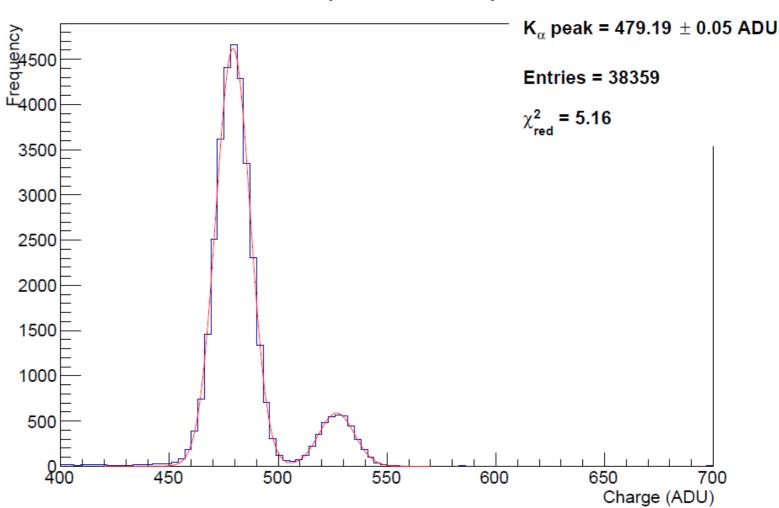
Introduction to cosmic rays

- An astronomer's enemy is a sensor scientist's best friend!
 - Cosmics need to be removed from sky images
 - However, they do provide a useful tool for characterising sensors:
- Tracks are very straight, very thin, and have a well-known energy distribution:
 - \rightarrow Energy distribution \rightarrow Measure track fluxes \rightarrow Gain measurement
 - Energy deposition in small area → Sharp tracks → PSF measurement & depth dependence
 - \rightarrow Track straightness \rightarrow Measure deviation \rightarrow Probe edge effects

Gain measurement with 55Fe

- Expose sensor to x-rays
- Histogram the charge associated with each x-ray hit
- Fit distribution with double Gaussian
 - Gain is found from pair creation energy in Si & the energy of ⁵⁵Fe x-rays

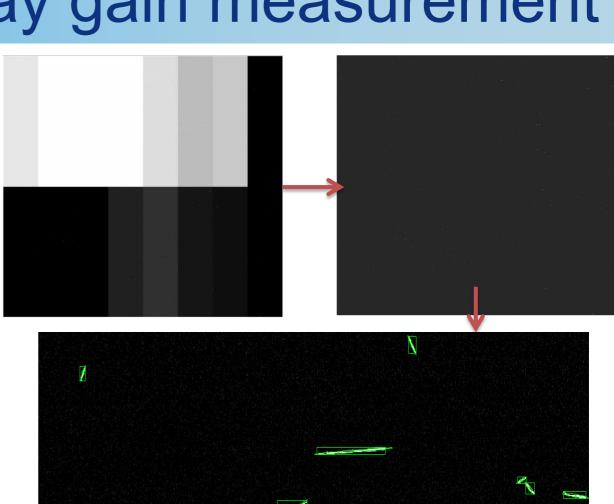


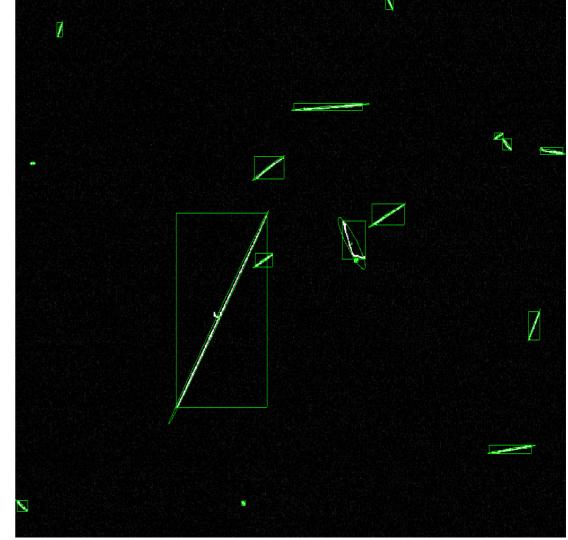


- Using \sim 5 mins of data (\approx 1M x-ray hits), the gain can be calculated to \sim 0.01%
- Only problem: can't do this in-situ

Alternative: cosmic ray gain measurement

- Take dark exposures, find tracks and classify events into three categories:
 - Worms
 - Spots
 - Cosmic rays
- Apply cuts to reject worms and spots, keeping only cosmics
- Cosmics are "minimum ionising particles"
 - Energy deposit per unit length is stochastic, but has a well known distribution
 - Landau distributed energy loss
 - Fit the Landau, get the gain





Landau Distribution

Landau Distribution

$$f(x, \Delta) = \phi(\lambda)/\xi$$

$$\phi(\lambda) = \frac{1}{\pi} \int_0^\infty e^{-u \ln u - u\lambda} \sin(\pi u) du$$

$$\lambda = \frac{1}{\xi} [\Delta - \xi(\ln \xi - \ln \epsilon + 1 - C)]$$

$$\ln \epsilon = \ln \frac{(1 - \beta^2)I^2}{2mc^2\beta^2} + \beta^2$$

$$K = 2\pi N_0 r_e^2 m_e c^2 = 0.1535 \text{MeV} c^2/\text{g};$$

x is the path length in g/cm^2 ;

 $r_e = \frac{e^2}{4\pi\epsilon_0 m_e c^2} = 2.8179 \times 10^{-13}$ cm is the classical electron radius; m_e is the mass of the electron;

 N_0 is Avagadro's number, 6.022×10^{23} ;

I is the mean excitation energy averaged over all electrons in eV;

Z is the atomic number of the medium;

A is the atomic weight of the medium;

 ρ is the density of the medium;

z is the charge of the incoming particle;

 $\beta = v/c$ is the ratio of the incoming particle to the speed of light;

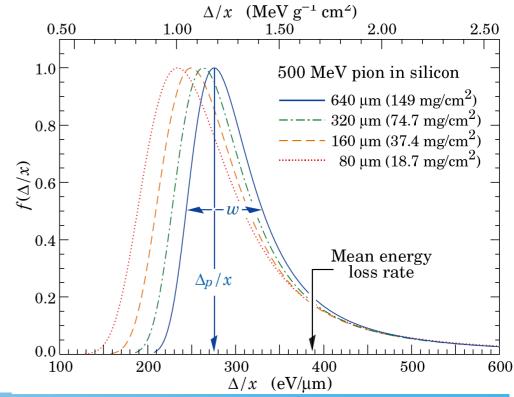
 γ is the Lorentz factor $\frac{1}{\sqrt{1-\beta^2}}$;

 δ_{ion} is a density correction;

C is a shell correction;

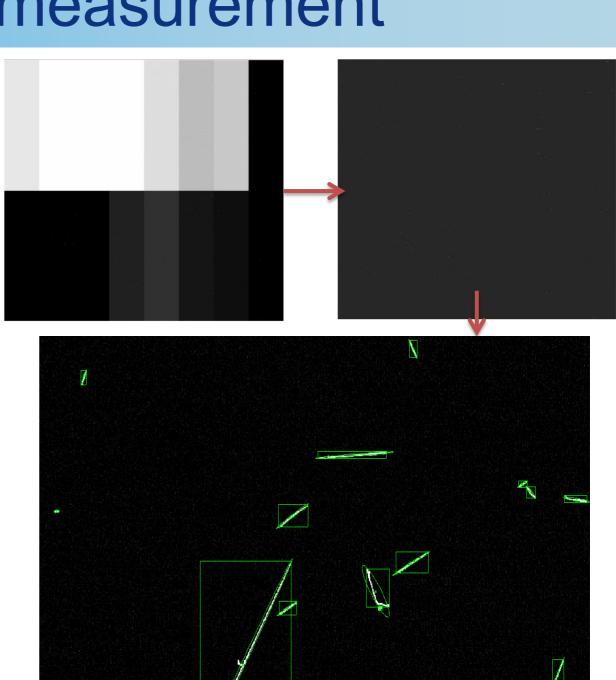
Peak Energy loss

$$\Delta_p = \xi \left[\ln \frac{2mc^2\beta^2\gamma^2}{I} + \ln \frac{\xi}{I} + j - \beta^2 - \delta_{ion}(\beta\gamma) \right]$$
$$\xi = x \cdot \frac{K}{2} \frac{Z}{A} \frac{1}{\beta^2} \text{MeV}$$

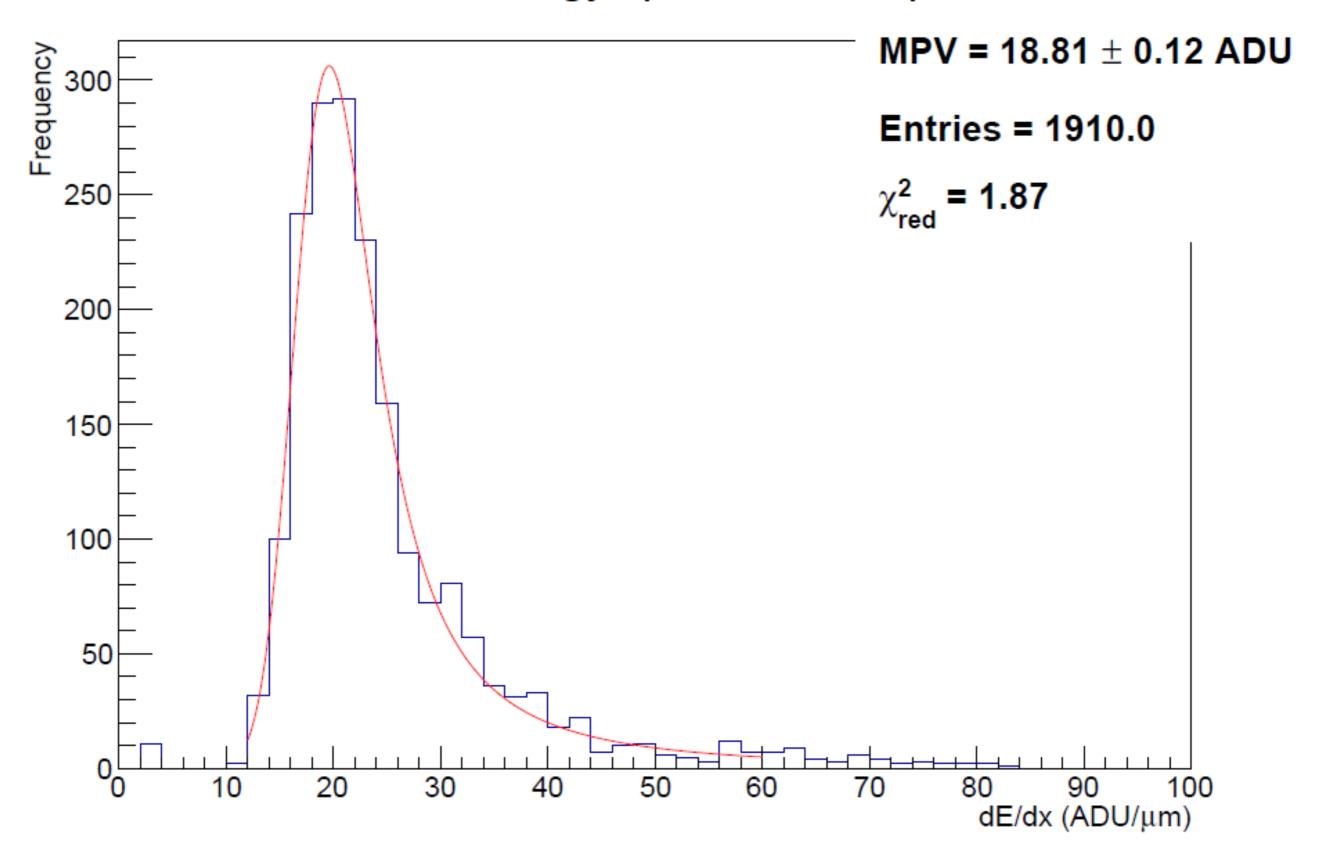


Cosmic gain measurement

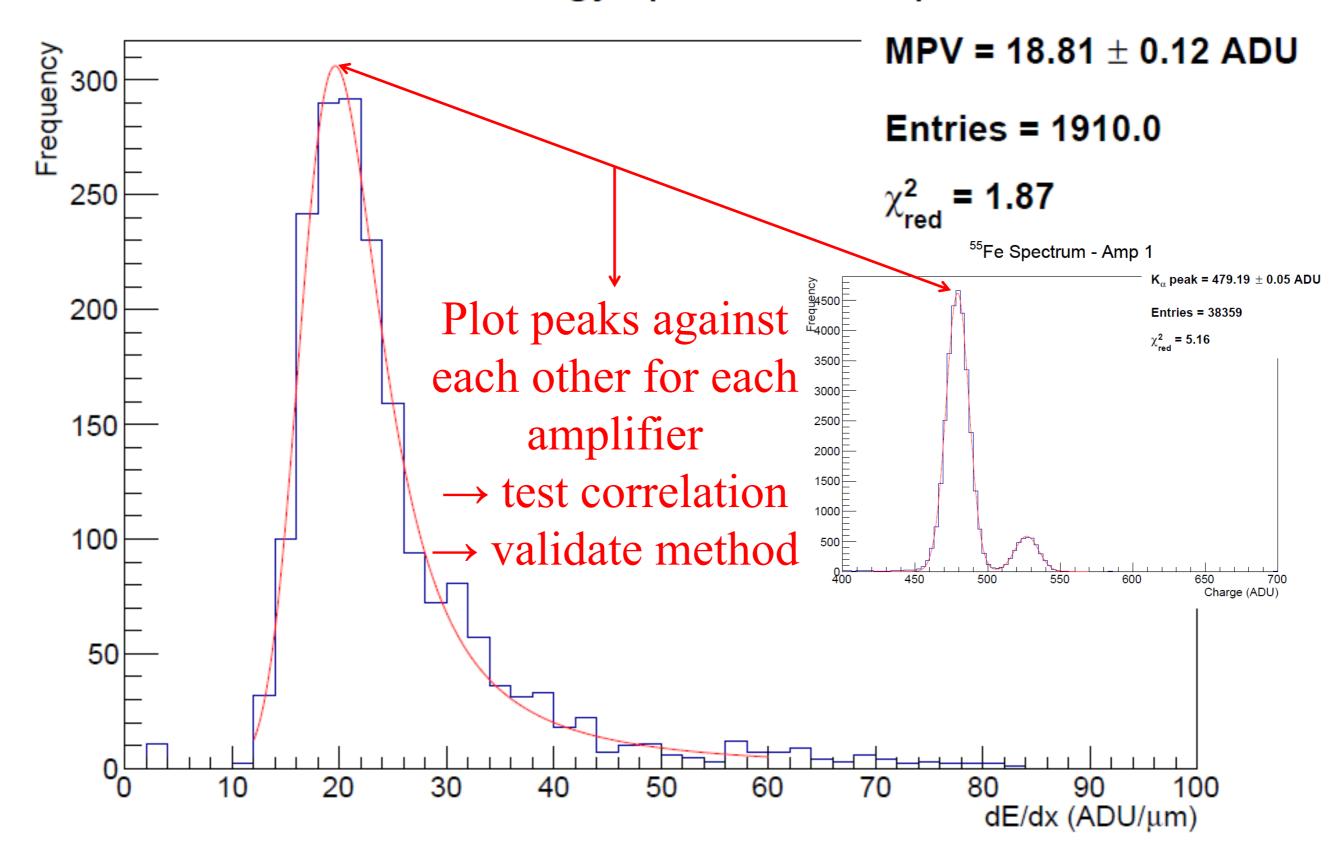
- Take dark exposures, find tracks and classify events into three categories:
 - Worms
 - Spots
 - Cosmic rays
- Apply cuts to reject worms and spots, keeping only cosmics
- Cosmics are "minimum ionising particles"
 - Energy deposit per unit length is stochastic, but has a well known distribution
 - Landau distributed energy loss
 - Fit the Landau, get the gain



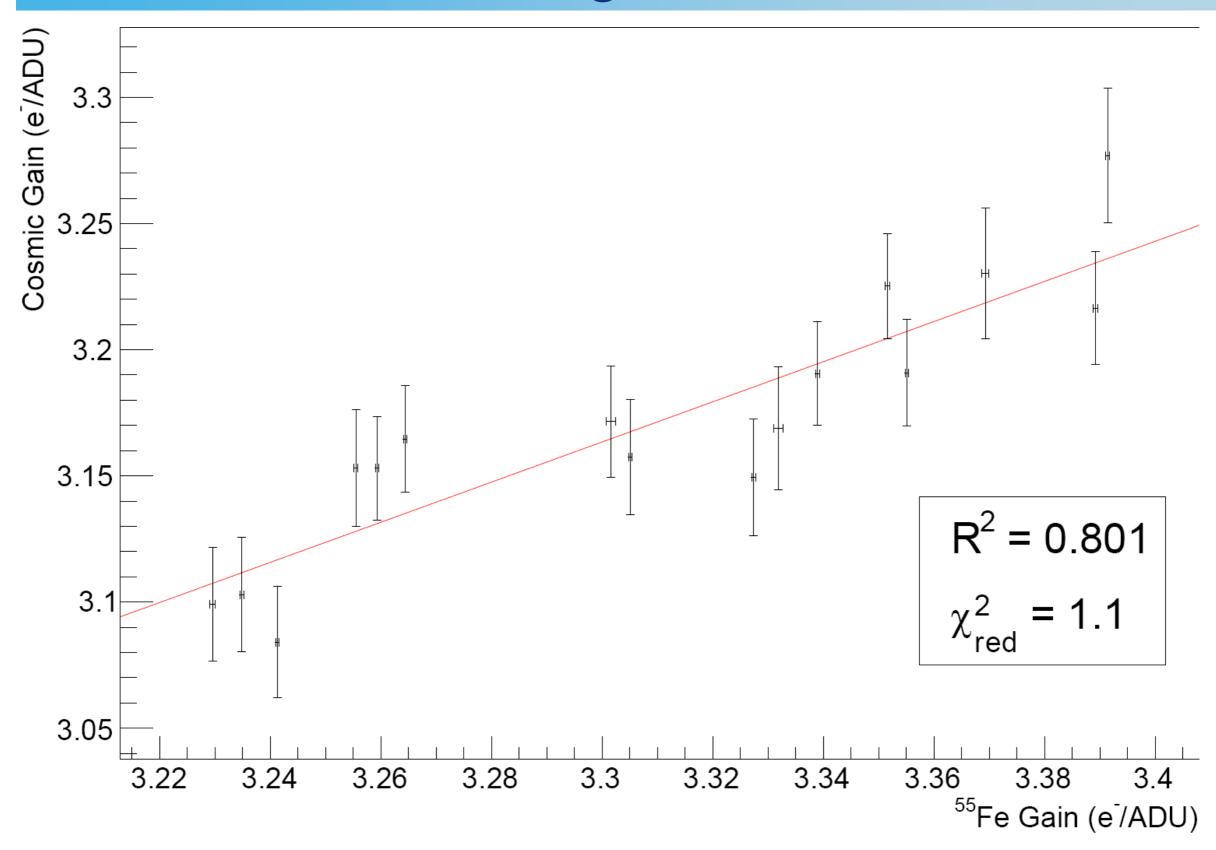
Muon energy spectrum - Amp 1



Muon energy spectrum - Amp 1



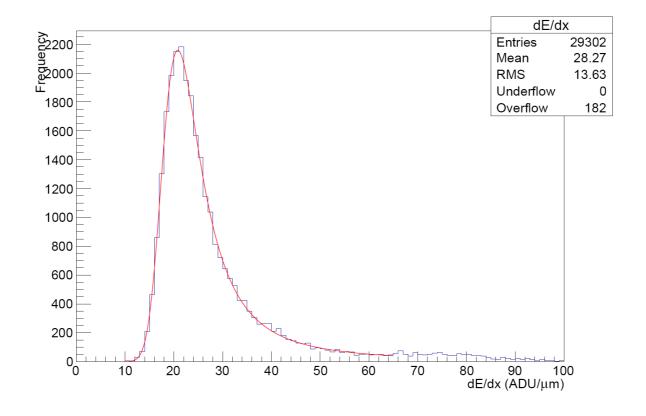
55Fe vs cosmic gain measurement



Gain measurement summary

Conclusion:

- We can measure gain without using ⁵⁵Fe or PTC
- We will get this information "for free" 24/7, and at twice the rate whilst on the mountain

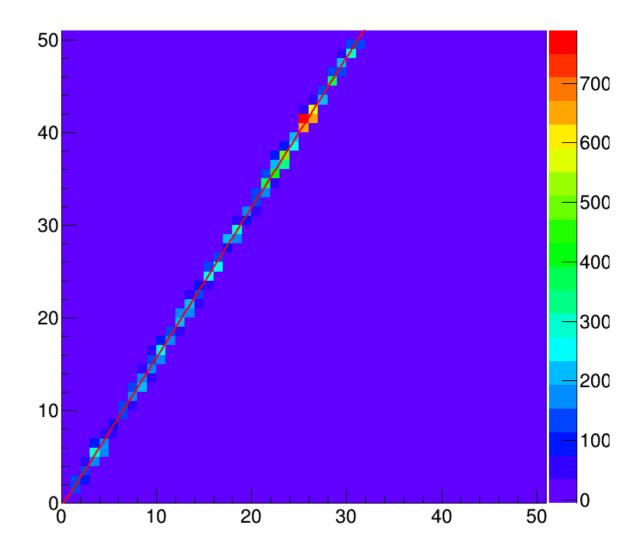


PSF Measurement

PSF Measurement

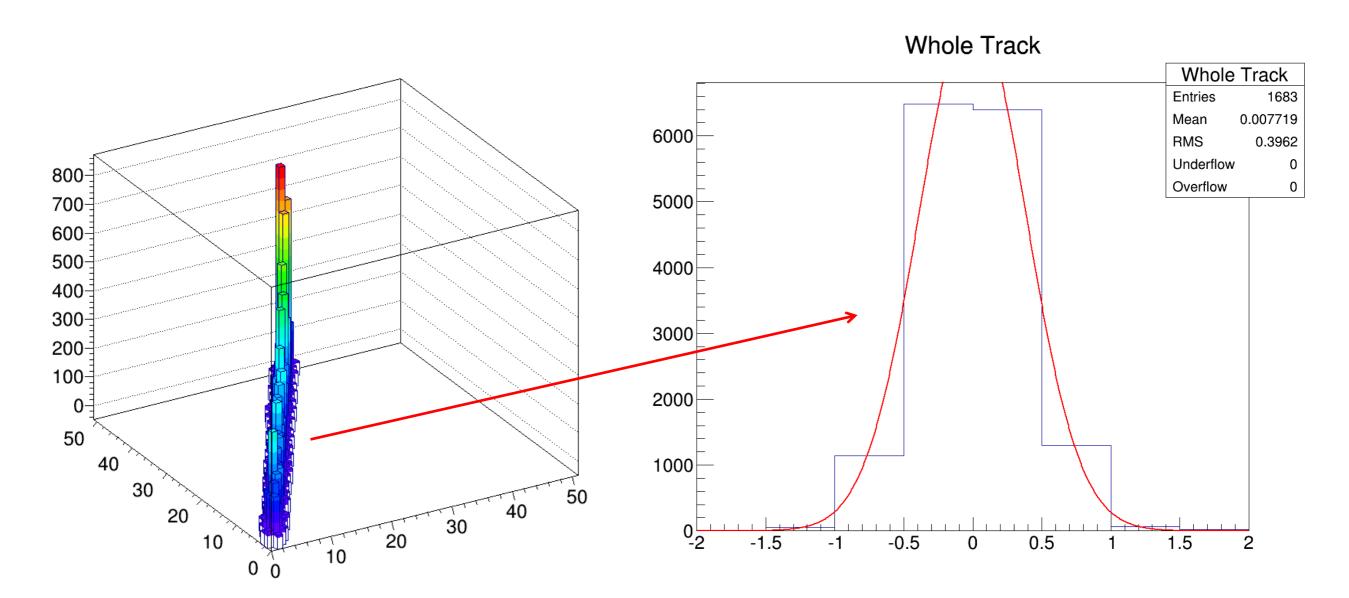
- Fit track with straight line
 - Project along line
 - Plot intensity as a function of distance to the track
 - Fit a Gaussian to get the PSF





PSF Measurement

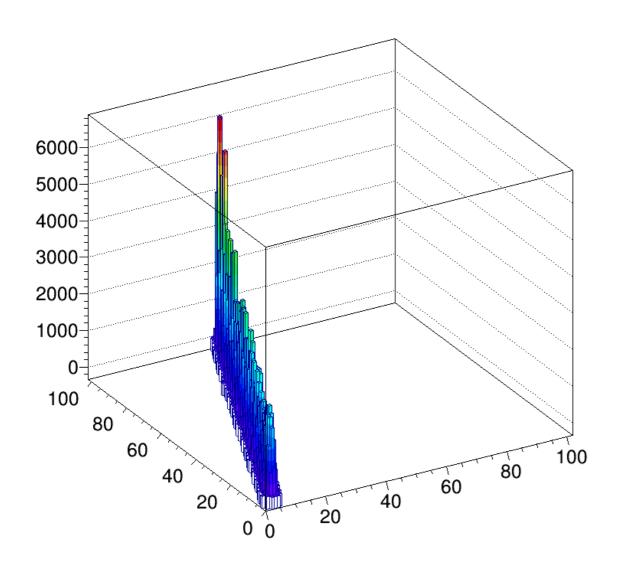
- Fit track with straight line
 - Project along line
 - Plot intensity as a function of distance to the track
 - Fit a Gaussian to get the PSF

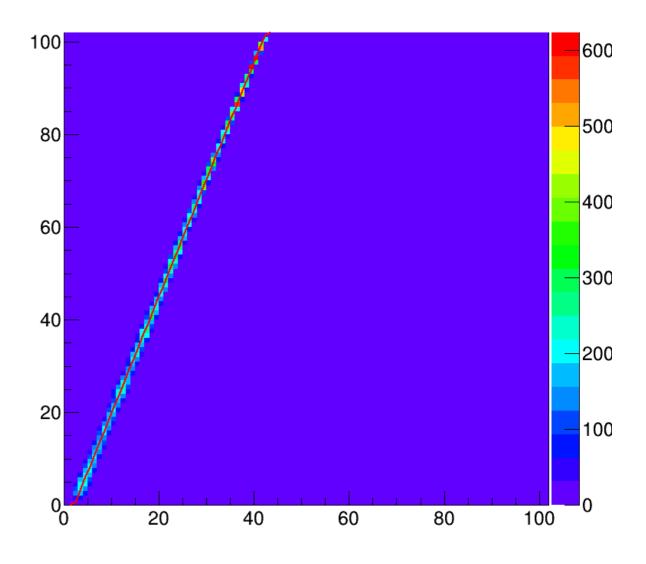


Example of PSF changing with depth

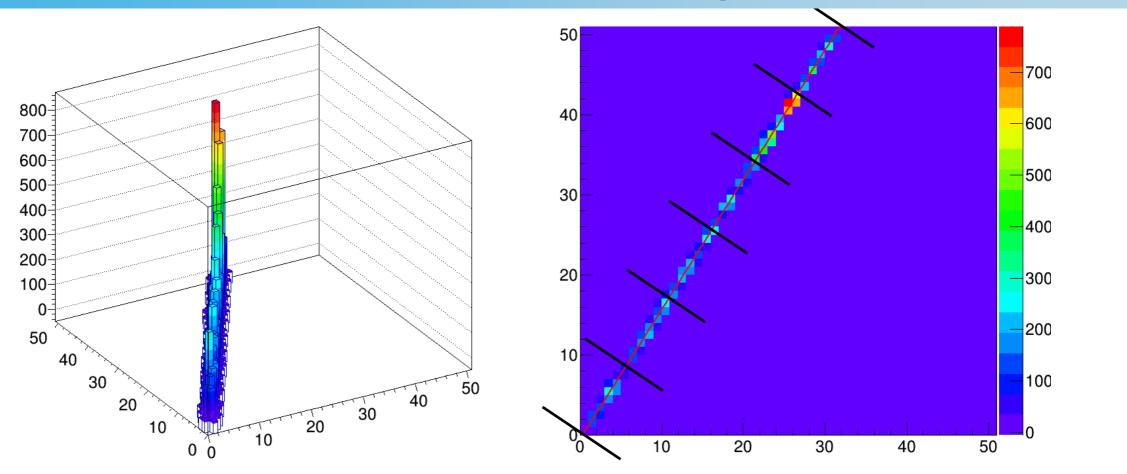
• Eye-candy:

• Nice example of a track visibly changing in PSF whilst traversing the sensor:



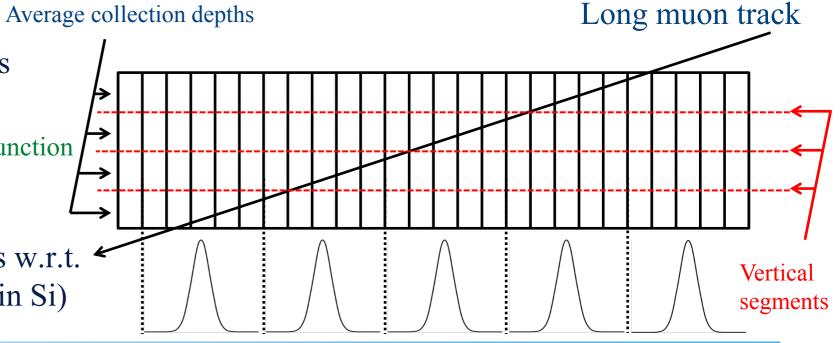


PSF vs Depth: Track Segmentation



Divide track into several segments

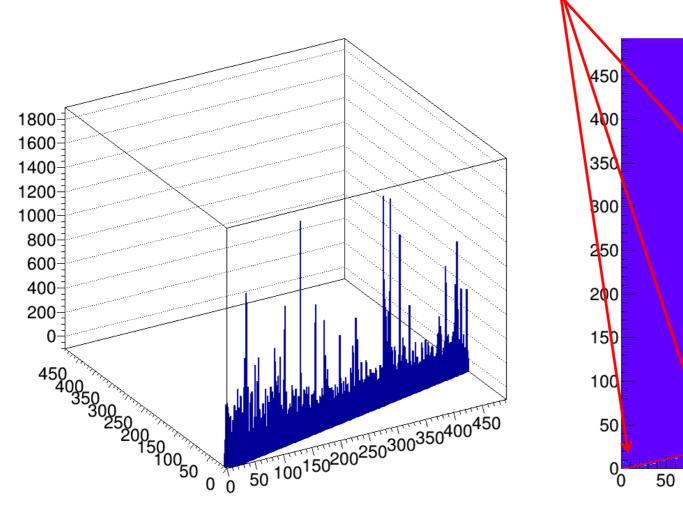
- For each segment:
 - Produce histogram of intensity as a function of distance to the track as before
 - Again, fit Gaussian to get the PSF
- Plot the widths of these Gaussians w.r.t. track segment number (i.e. depth in Si)

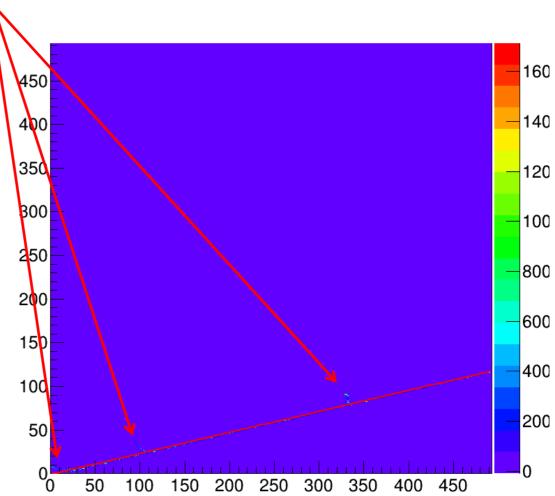


PSF Track selection

- Here, however, unlike for gain measurements, when measuring PSF the δ -rays must be *excluded*
 - They will ruin the PSF measurement for the depth at which they occur

Remove tracks with deltas

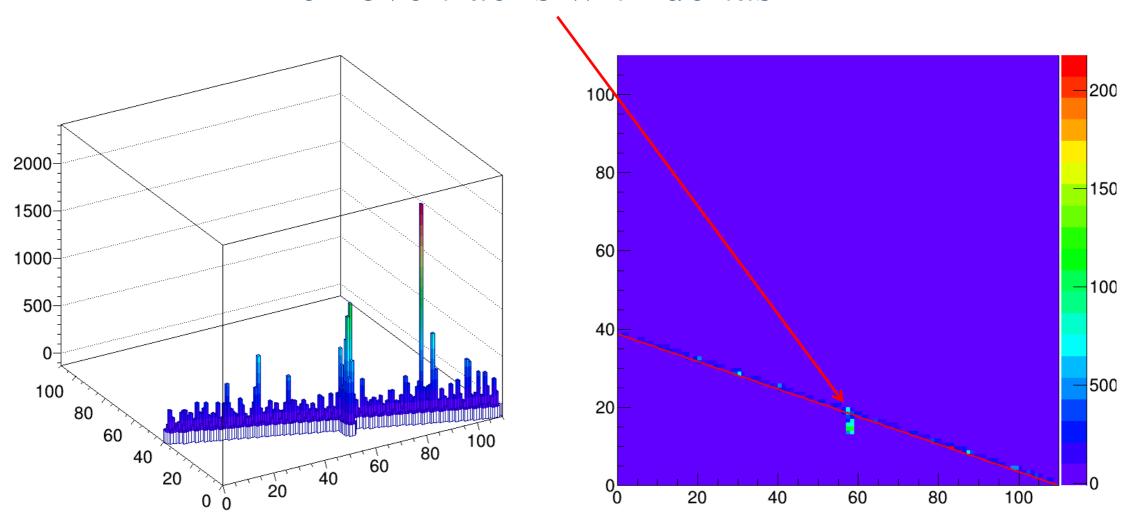




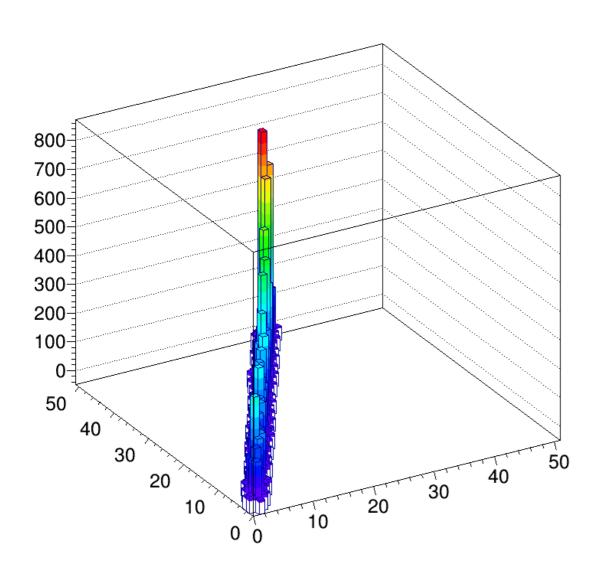
PSF Track selection

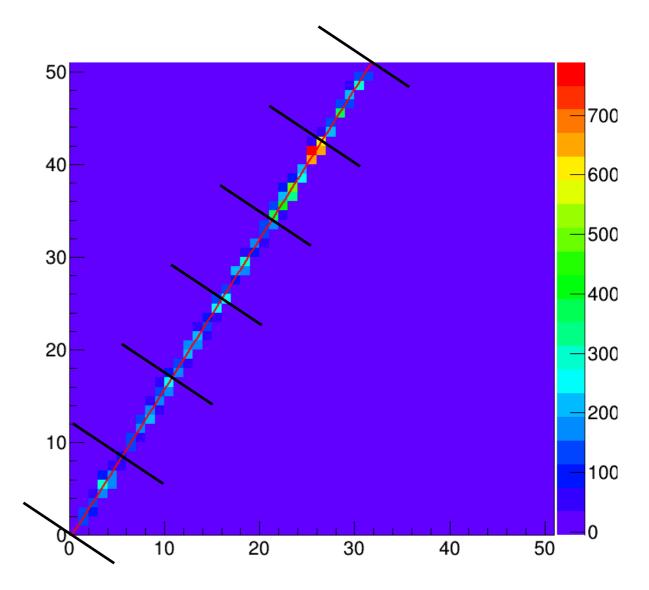
- Here, however, unlike for gain measurements, when measuring PSF the δ-rays must be *excluded*
 - They will ruin the PSF measurement for the depth at which they occur

Remove tracks with deltas

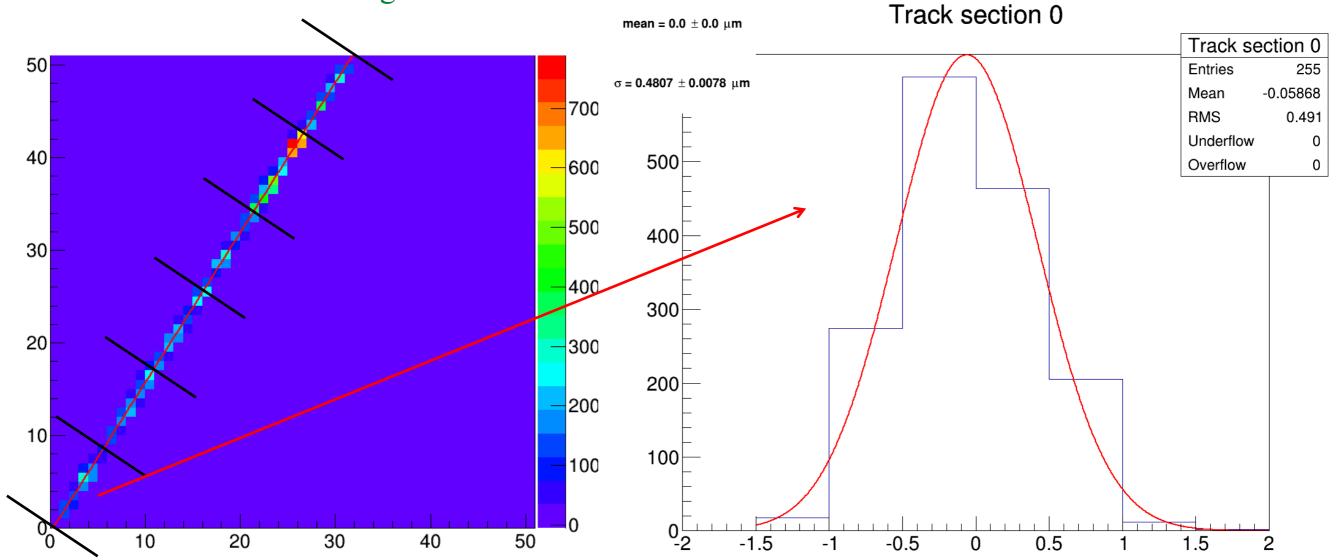


- Fit each track with straight line
 - Divide track into n segments
 - For each segment:
 - Produce histogram of intensity as a function of distance to the track
 - Fit a Gaussian to get the PSF

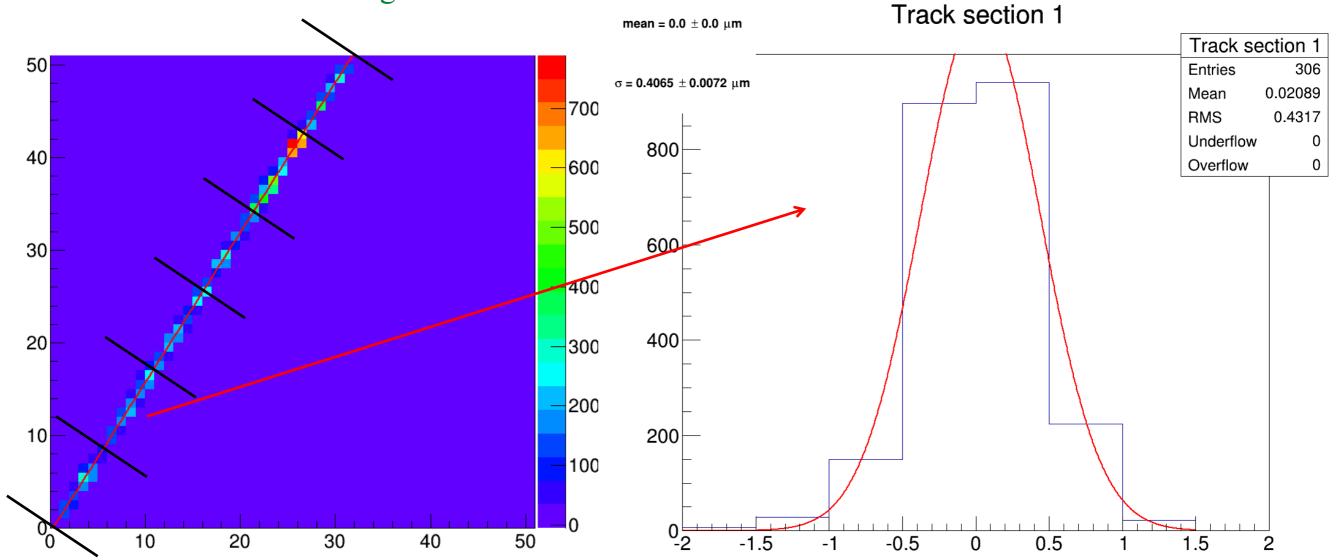




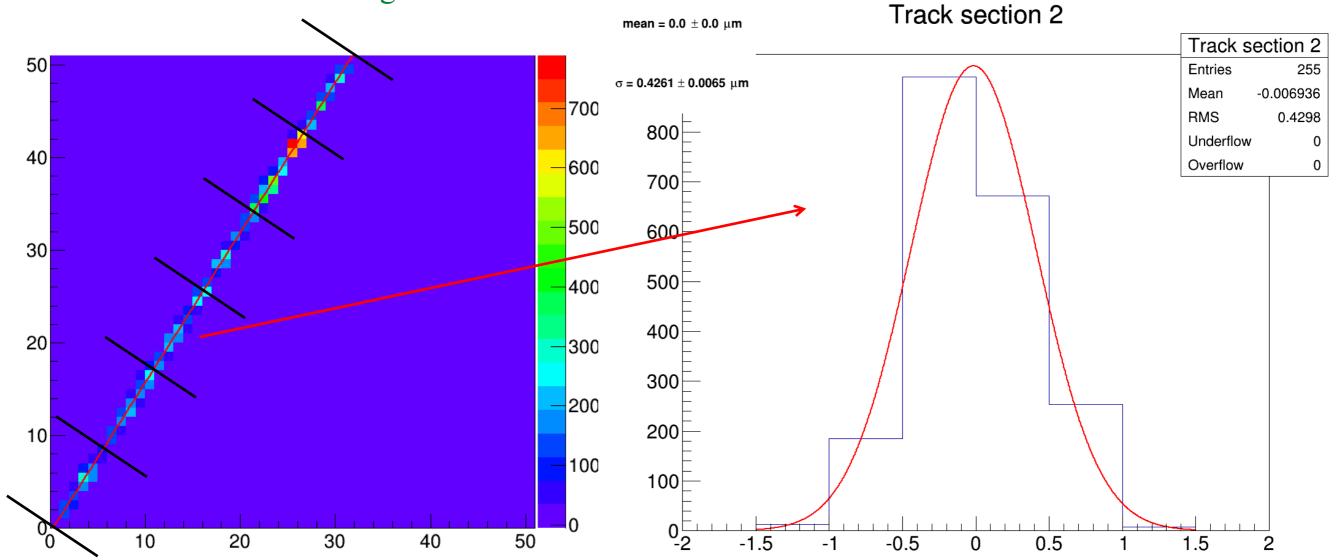
- Fit each track with straight line
 - Divide track into n segments
 - For each segment:
 - Produce histogram of intensity as a function of distance to the track
 - Fit a Gaussian to get the PSF



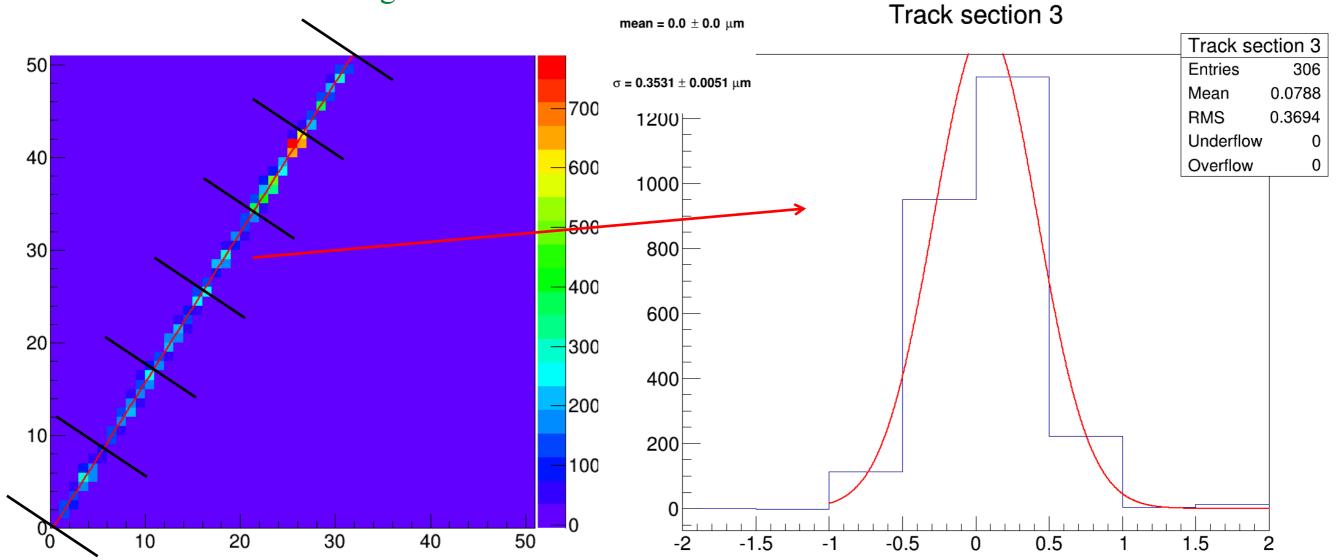
- Fit each track with straight line
 - Divide track into n segments
 - For each segment:
 - Produce histogram of intensity as a function of distance to the track
 - Fit a Gaussian to get the PSF



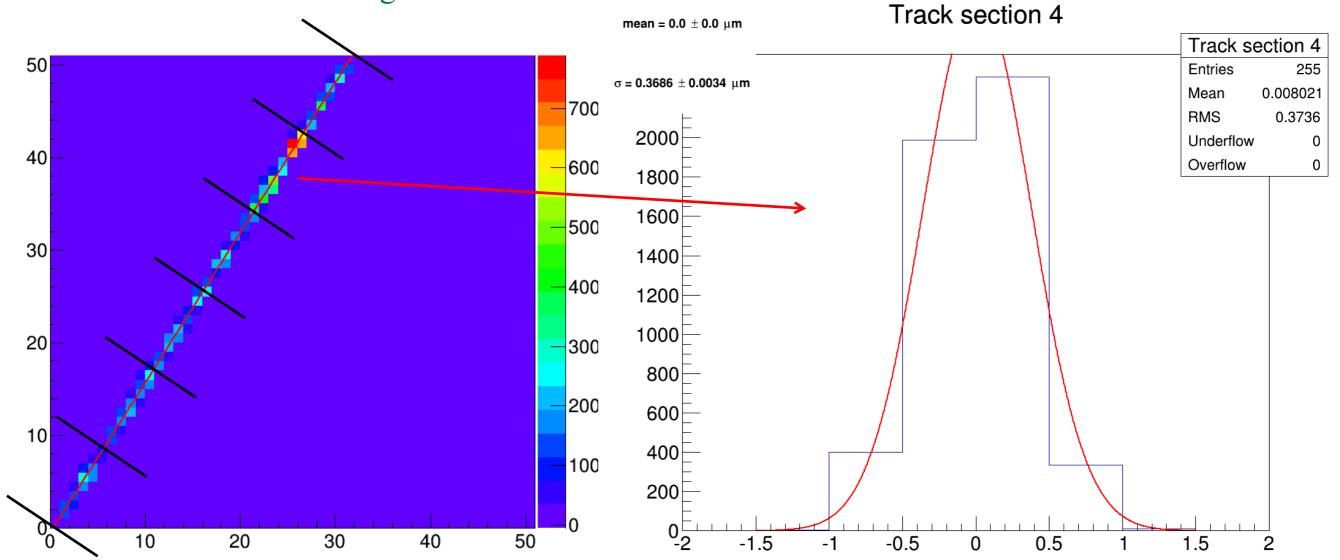
- Fit each track with straight line
 - Divide track into n segments
 - For each segment:
 - Produce histogram of intensity as a function of distance to the track
 - Fit a Gaussian to get the PSF



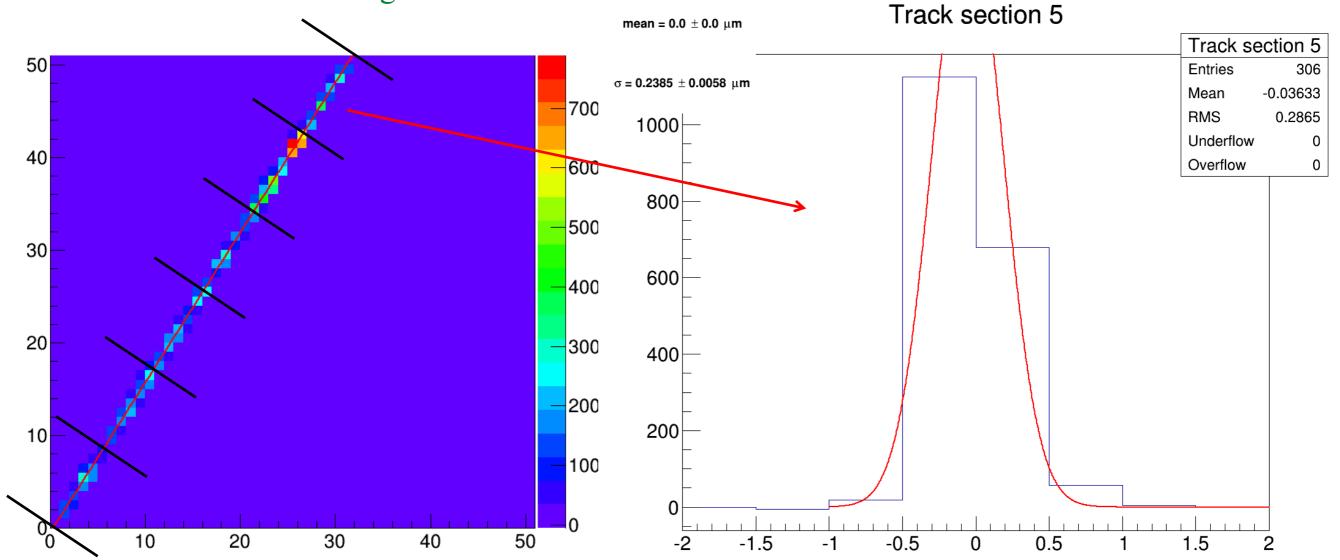
- Fit each track with straight line
 - Divide track into n segments
 - For each segment:
 - Produce histogram of intensity as a function of distance to the track
 - Fit a Gaussian to get the PSF



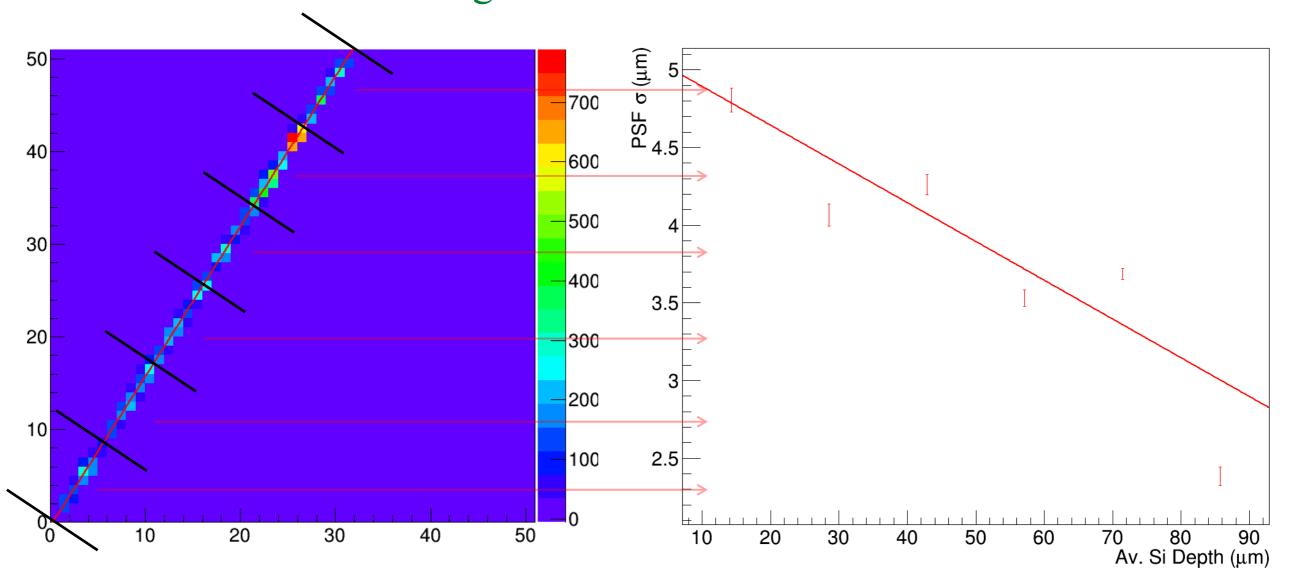
- Fit each track with straight line
 - Divide track into n segments
 - For each segment:
 - Produce histogram of intensity as a function of distance to the track
 - Fit a Gaussian to get the PSF



- Fit each track with straight line
 - Divide track into n segments
 - For each segment:
 - Produce histogram of intensity as a function of distance to the track
 - Fit a Gaussian to get the PSF



- Plot the widths of these Gaussians w.r.t. track segment number
- Fit a straight line to determine the orientation of the track with respect to the silicon
- ▶ If gradient is positive leave as is
- ▶ If gradient is negative reverse order
 - Tracks are now aligned w.r.t sensor surface



Diffusion Measurement

- Average all tracks segment PSFs together
- Plot these average PSFs as a function of (averaged) depth in silicon
 - → Get diffusion as a function of depth in silicon

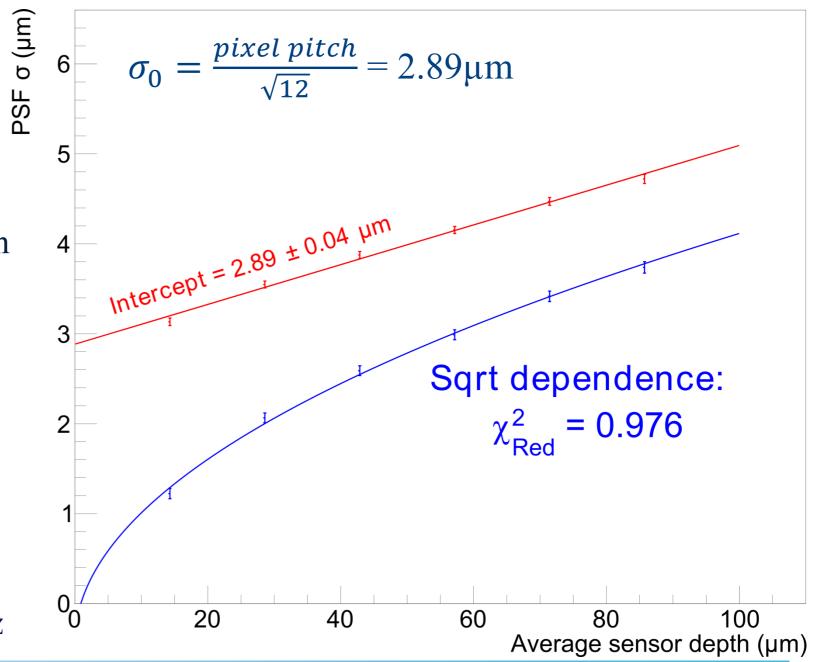
$$\sigma = \sqrt{\sigma_0^2 + \sigma_{diff}^2}$$

Where:

- \bullet σ is the total PSF
- σ_0 is the intrinsic resolution of the pixel detector
- σ_{diff} is the contribution from diffusion

$$\sigma_{diff}(\Delta z) = \sqrt{2 \frac{kT}{e} \frac{D\Delta z}{V}}$$

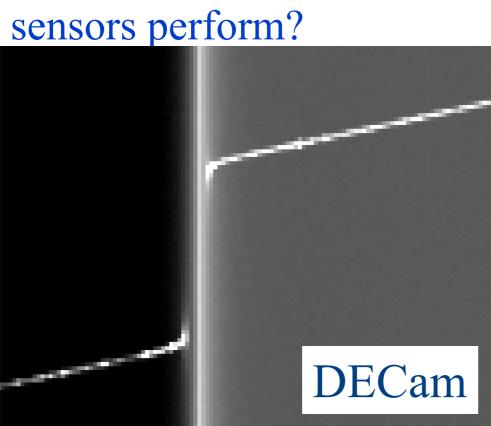
• For sensor of thickness D, at bias voltage V, at depth z

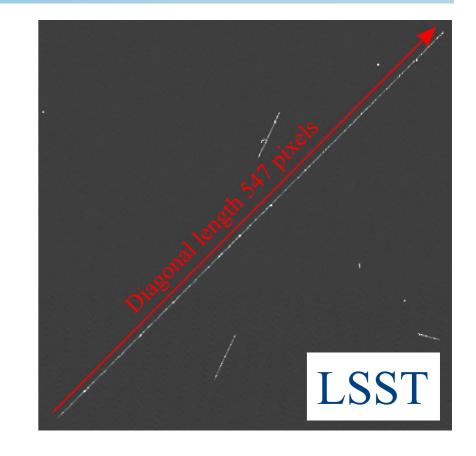


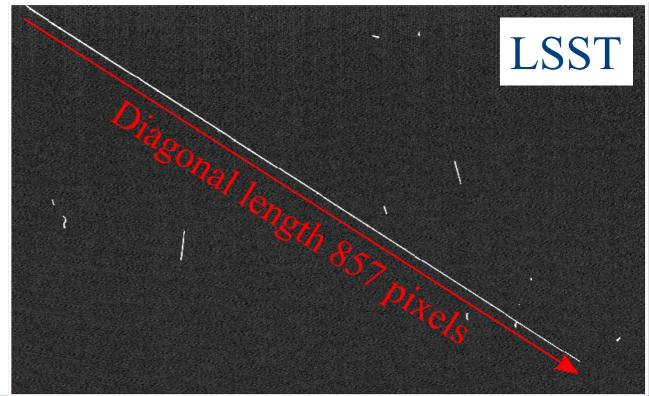
Edge Effects

Measuring straightness

- Cosmic ray tracks are very straight
- This straightness can be exploited to measure distortion at the edges caused by lateral electric fields arising from guard rings etc
- DECam sensors are known to suffer badly from these distortions – how do LSST sensors perform?







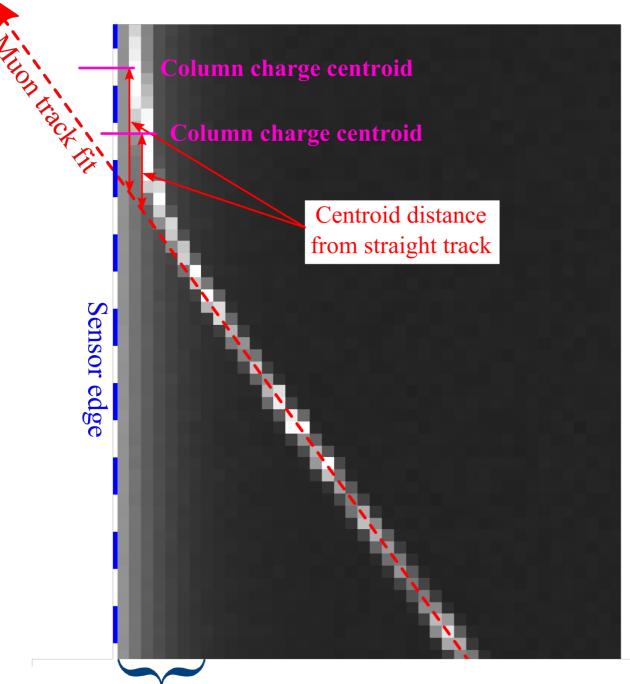
Track Bending

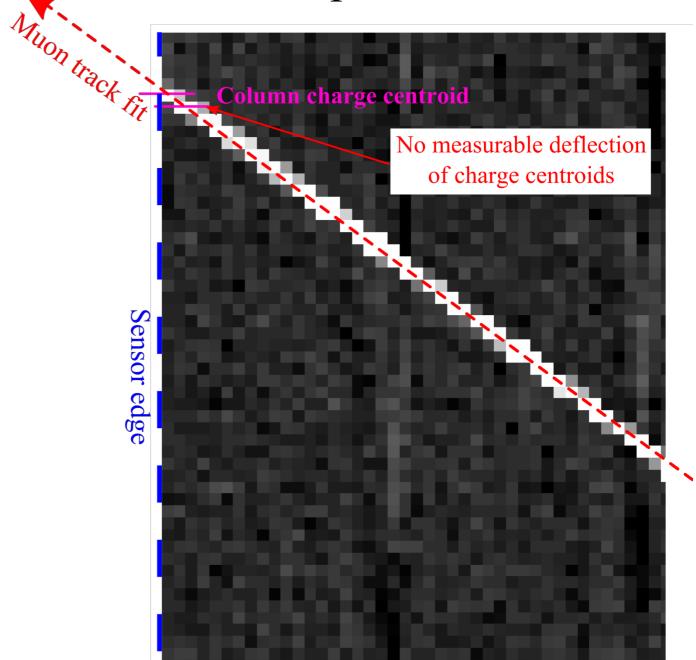
DECam sensor

>11 pixel deflection

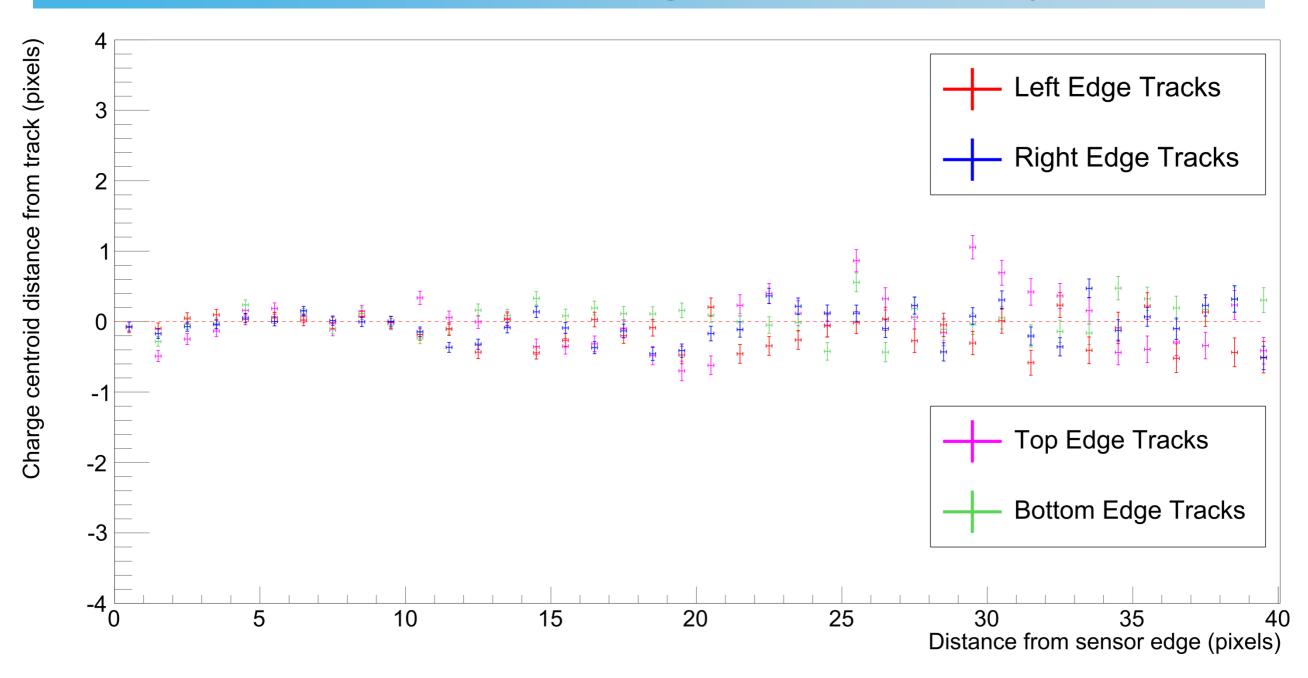
LSST sensor

< 0.5 pixel deflection





Quantitative Straightness Analysis



Distance of charge centroid from track plotted vs distance from sensor edge

Summary

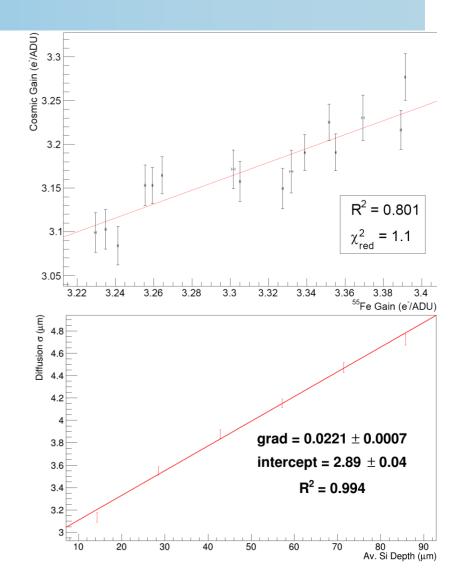
- Gain measurement with cosmics
 - No radioisotopes required
 - Good correlation with ⁵⁵Fe gain measurement

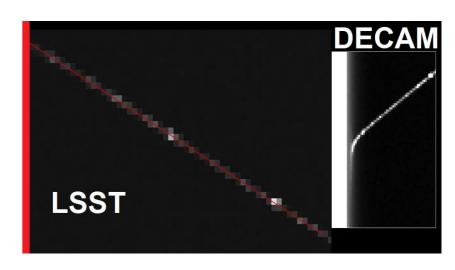
Diffusion measurement

- PSF found to increase with distance to collection electrode
- Will be compared with DECam sensors

Measurement of edge straightness

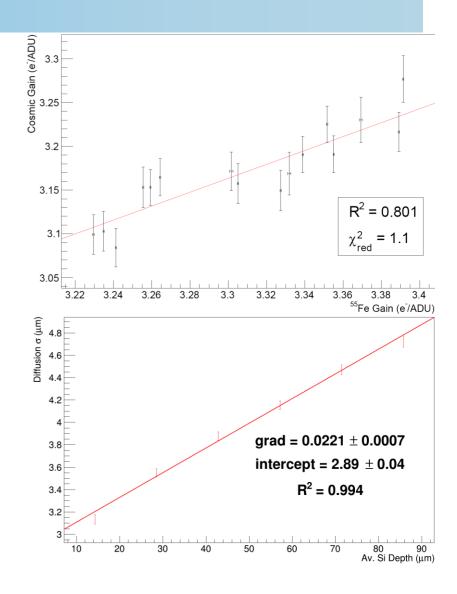
- LSST sensors distort much less than DECam (if at all)
- Comparative quantitative analysis to follow

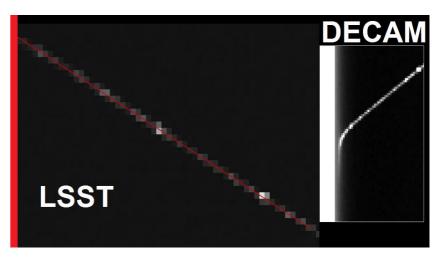




Summary

- Many thanks to:
 - Paul O'Connor & Ivan Kotov for the data
 - Robert Lupton & Paul Price for their help with DMStack

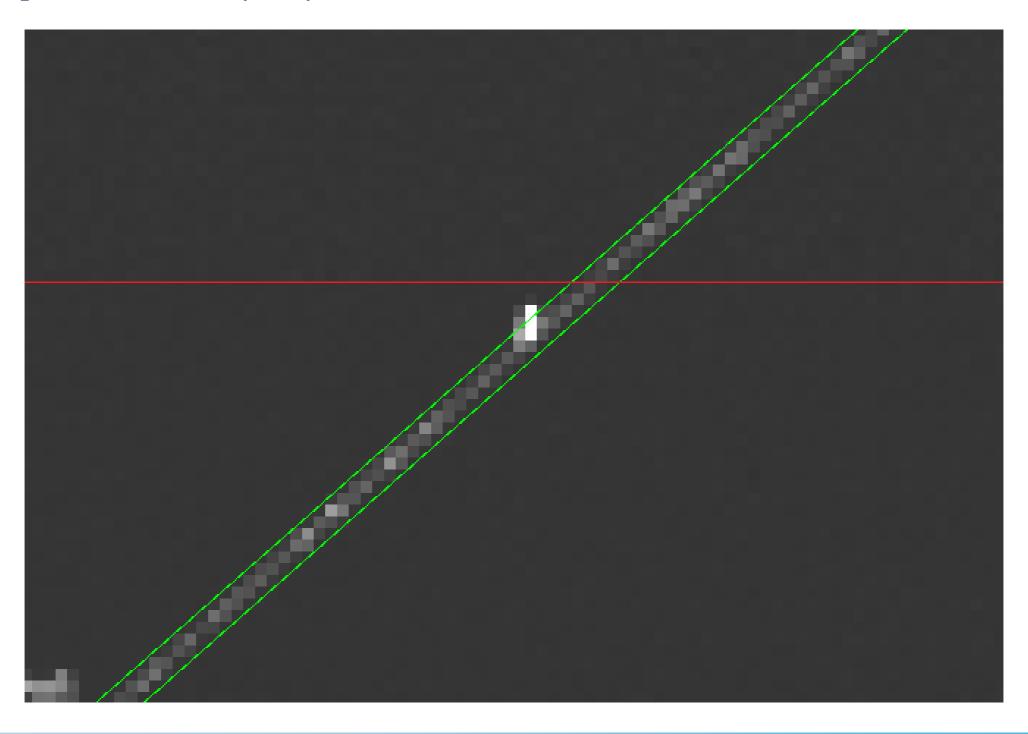




Backup slides

Midline bending

- Midline doesn't appear to bend either
 - No quantitative analysis yet



Midline