Particle Scan of EIC Far-Forward Region

Alex Jentsch

June 26th, 2020

Preliminaries

- Only protons used for this scan.
 - Will repeat for a few other particles, especially pions.
- Used particle gun and sampled the following ranges.
 - + 0 \varphi < 2 π , 0 < θ < 20 mrad
- Magnets set to the maximum field settings (i.e. the settings for the 275 GeV proton beam).
- All current FF detectors included.
 - Roman Pots
 - Off-Momentum Detectors
 - B0 Spectrometer
 - ZDC (not relevant for protons, but perhaps for pions**)

Preliminaries

Results (combined detectors)

Results (combined detectors)

Results (combined detectors)

Results (Roman Pots)

Results (Roman Pots)

Results (Roman Pots)

Results (off-momentum detectors)

Results (off-momentum detectors)

Results (off-momentum detectors)

Results (BO Detector)

Results (BO Detector)

Results (BO Detector)

Takeaways

- Acceptance looks more or less uniform for 5.5 $< \theta < 20 \ mrad$
 - This is where the protons fall nicely into the BO sensors symmetric in phi.
 - The BO engineering design is still in flux, so these acceptances may change in the near future.
- For $0 < \theta < 5.5 mrad$ things are complicated. The acceptance depends a lot on the longitudinal momentum of the proton compared to the magnet setting.
 - Likely need a 3D parameterization for best accuracy, f(theta, phi, x_L)
 - For x_L > .65, should be okay but need to be aware of 10σ cut.
 - The Off-Momentum Detectors will also likely have a different acceptance when more engineering details are available.
- All summarized in a short PDF for folks who need to start the fast smearing now – just be aware of the caveats.