Standard Model: Necessary but not Sufficient

Hooman Davoudiasl

HET Group, Brookhaven National Laboratory

SULI Lecture, Physics Department, BNL
June 23, 2020
...I am induced by many reasons to suspect that they [phenomena of nature] may all depend upon certain forces by which the particles of bodies, by some causes hitherto unknown, are either mutually impelled towards each other, and cohere in regular figures, or are repelled and recede from each other; which forces being unknown, philosophers have hitherto attempted the search of nature in vain; but I hope the principles here laid down will afford some light either to this or some truer method of philosophy.

Sir Isaac Newton (1643-1727)

(Preface to Principia)
\[\hbar \approx 1.05 \times 10^{-34} \text{ J s} \quad ; \quad c \approx 3.0 \times 10^8 \text{ m/s} \]

\[\hbar = c = 1 \text{ in what follows} \]

Mass and Energy measured in eV

Length \leftrightarrow 1/\text{Mass}

GeV (Giga eV) = 10^9 eV

proton mass \approx 1 \text{ GeV}

TeV (Tera eV) = 10^{12} \text{ eV}
Everyday life:

Gravity and Electromagnetism (EM)
Falling Apple: Gravity

Well-described by Newtonian gravity

State of the Art: General relativity (GR)
- Spacetime curved by matter/energy.

Sun
- Gravitational Force \rightarrow Geodesic.

Earth’s Orbit
- Basis of modern cosmology.

Einstein’s equations:

\[g_{\mu\nu} = 8\pi G_N \mathcal{T}_{\mu\nu} \]

G_N Newton’s constant, $\mu, \nu = 0, 1, 2, 3$ (spacetime).
Detection of Gravitational Waves

- Directly confirms a long-standing (∼ 100 year) GR prediction
- Manifestation of the dynamical nature of spacetime

GW150914 (29, 36) \(M_\odot \)
GW151226 (8, 14) \(M_\odot \)

(SXS Project)

- Outstanding experimental achievement: measured strain (distance variation) ∼ 10\(^{-21}\)! (highly sophisticated laser interferometry)
- 2017 Nobel Prize in Physics: Barish, Thorne, and Weiss
Shadow of M87*, Event Horizon Telescope

Mass: ~6.5 Billion Solar Masses; Distance: ~55 Million Light Years

Results released April 10, 2019
Apple on the ground: Quantum Mechanics and EM

- Atoms in apple and ground: Electron cloud interactions stop the fall.
 - Pauli’s exclusion principle for electrons; EM: repulsion.
- Atom: Nucleus (p and n) and electrons; Quantum Mechanics.
- Nuclear forces: weak and strong, not everyday, microscopic.
- Weak and EM forces → Unified Electroweak Theory.

Summed up in the Standard Model of particle physics.
The Standard Model (SM):

Most precise description of microscopic physics

- **Gauge symmetry:** $SU(3)_{\text{strong}} \times SU(2) \times U(1)_{\text{electroweak}}$

- **Elementary fermions, spin-1/2**
 - Quarks $(+2/3, -1/3)$: Strong interactions
 - Leptons $(0, -1)$: No strong interactions

- **Gauge Fields, spin-1**
 - Force mediators, generalized photons

* Spin: intrinsic angular momentum (quantum mechanics)
Strong Interactions \([SU(3) \text{ (QCD)}]\):

- Short-ranged, confined to nuclear distances \(\sim 10^{-15}\text{m}\)
- Gluons \(g\) bind quarks into **hadrons** (hadros: Greek for “bulky”): \(p, n, \pi^0 (\bar{q}q), \ldots\)
Electroweak Interactions $[SU(2)_L \times U(1)_Y]$:

- Spontaneously broken to EM

\Rightarrow Massive $W^\pm (80.4 \text{ GeV}/c^2)$, $Z^0 (91.2 \text{ GeV}/c^2)$

Short-ranged: $\Delta x \sim c \Delta t \sim \hbar/(mc) \sim 10^{-18} \text{ m}$ (Heisenberg uncertainty)

Q: Why are there stable neutrons in atomic nuclei?

- EM: $U(1)_{EM}$ (QED)

Massless photon, γ, long-ranged
A pencil, standing on its tip: unstable, falls to its “ground state”.

- **Underlying theory**: rotationally symmetric, no preferred direction.
- **The pencil spontaneously picks an orientation, breaks the symmetry.**
What breaks electroweak symmetry?

A key question probed at the LHC (pp collider) at CERN

Beam energy: 2×7000 GeV (design)

2×6500 GeV Run finished in 2018; to resume in 2021

Circumference (km): 26.659
Electroweak Symmetry Breaking in SM

- Higgs (H) boson condensation $\langle H \rangle \neq 0$.

- Elementary particle masses from interactions with $\langle H \rangle \neq 0$:
 - $m_W, m_Z, m_{\text{fermion}} \propto \langle H \rangle$
 - Fermion flavor: $m_t/m_u \sim 10^5$! (Why?)

- $m_\nu = 0$ (Strongly disfavored by data!)

Q: How much of the “visible” mass in Universe is from Higgs?
July 4th, 2012, discovery announced at CERN

Scalar (spin-0) H boson discovered at ~ 125 GeV

Run 2 data, ATLAS-CONF-2018-031

Early Run 1: ~ 10 fb$^{-1}$
SM + GR ⇒ Great Success!

Nearly all* measurements in agreement with SM+GR.

* For example, theory and experiment (BNL) for $g_\mu - 2$ disagree, at $\sim 3.7\sigma$:

$$\Delta a_\mu = a_\mu^{\text{exp}} - a_\mu^{\text{SM}} = 279(76) \times 10^{-11} \quad (2006.04822 \ [\text{hep-ph}]) \quad a_\mu \equiv (g_\mu - 2)/2$$

- Details in Bill Morse’s lecture on muon $g - 2$ on Friday
SM: An Incomplete Description of Nature

• Theoretical Hints

Why is gravity so weak?

Why is the neutron electric dipole moment so small?

...

• Experimental Evidence

Non-zero neutrino masses, dark matter, ...
Conceptual Mystery: Why is gravity so weak?

Force between e and p in an atom: $\frac{F(\text{Grav})}{F(\text{EM})} \sim 10^{-40}$!

Gravity: the weakest known interaction

Newton’s Constant: $G_N = 6.67 \times 10^{-11}$ m3kg$^{-1}$s$^{-2}$

Gravity scale: Planck mass

$$M_P \equiv (\hbar c/G_N)^{1/2} \approx 10^{19} \text{ GeV} \sim (10^{-35} \text{ m})^{-1}!$$

(mass \leftrightarrow 1/length; Heisenberg)

$$M_P \gg m_W$$

$h = c = 1$.
Rephrase the question: Why is $m_W \sim 10^{-17} M_P$?

The Hierarchy Problem:

- Higgs mass $m_H \approx 125$ GeV, but quantum effects imply $m_H \rightarrow M_P$.

\[m^2_H \sim (100 \text{ GeV})^2 : \text{cancelations to} \]

\[0.0000000000000000000000000000000001 \]

- Conceptually “unnatural”

A much more severe case (Cosmological Constant Problem):
Energy density of empty space ($\sim 10^{-120} M_P^4$)
Hierarchy and New Physics Near m_H

- **Strong Interactions near m_H**
 - Composite Higgs (analogue of a QCD hadron)
 - Extra dimensions (lowering the fundamental mass scale of gravity by diluting it in other compact dimensions)

- **Supersymmetry: Fermions \leftrightarrow Bosons.**
 - Quantum effects on $\langle H \rangle$ cancel

- So far, no evidence at LHC for new physics near $m_H \approx 125$ GeV

- More elusive physics, or perhaps “naturalness” not the right guide
Strong Empirical Evidence for Beyond SM

- **Neutrino Flavor Oscillations**

- **Solar, atmospheric, and terrestrial data:**

 \[m_\nu \lesssim 10^{-6} m_e \]

- **Simple extension:** right-handed neutrinos \(\nu_R \)

- **Typically, difficult to test:**

 - \(\nu_R \) very massive or else negligible coupling to SM

- **Cosmology**

- **Dark Matter:** neutral, cosmologically stable
95% of Cosmos: unknown!

Cosmic acceleration (dark energy):
Could be vacuum energy (cosmological constant); no dynamics
Visible (Everyday) Matter

- ~ 5% of energy budget
- Baryonic: protons, neutrons
- Asymmetric: $\Delta B \neq 0$ (negligible anti-matter today)
Generation of Baryon Asymmetry

•Requires Sakharov’s conditions for *baryogenesis*:

(i) Baryon number violation

(ii) C and CP violation (distinguishing particles from anti-particles)

(iii) Departure from equilibrium

•Present in Standard Model (SM), but not in sufficient amounts

•ΔB small, but still too big to explain! ⇒ New Physics
Dark matter (DM)

- ~ 27% of energy density

- Robust evidence from cosmology and astrophysics
 - CMB, BBN, rotation curves of galaxies, lensing, Bullet Cluster, ...

- Unknown origin
 - Feeble interactions with atoms, light
 - Self-interactions not strong ($\sigma \lesssim 1$ barn)
 - Not explained in SM

Strongly motivates new physics

So far, evidence limited to gravity effects
How do you look for something of unknown nature?

Possible DM mass scale: $10^{-22} \text{ eV} \lesssim M_{\text{DM}} \lesssim 10^{68} \text{ eV}$

(~ 90 orders of magnitude!)

Q: Why is there a lower bound ($\sim 10^{-22} \text{ eV}$)?
Searches often guided by *theoretical motivation*

- New physics to address unresolved questions in SM

Example:

- **The hierarchy** problem in SM:
 - New particles with masses $M_{\text{new}} \gtrsim M_H (\approx 125)$ GeV: supersymmetry, . . .
 - Energy scale often referred to as the “weak scale” (weak interactions)

 ⇒ **Weakly Interacting Massive Particles** (WIMPs)

- SM extensions often introduce/require new symmetries

- Symmetry \rightarrow Charge conservation

 ⇒ Stable or long-lived particles: DM candidates
WIMPs

- Thermal relic density: annihilation, freeze-out
 - $\rho_{\text{WIMP}} \propto 1/\sigma_{\text{ann}}$
 - $\sigma_{\text{ann}} \sim g^4/M^2$
 - $g \sim g_{\text{weak}}, M \sim \text{TeV}$: roughly the right amount of DM

- Weak scale ($\sim \text{TeV}$) theoretically motivated

- However, g^4/M^2 may be achieved otherwise (WIMPless Miracle)

Feng and Kumar, 2008

WIMPs: have been a main focus of DM searches

- DAMA/LIBRA, CDMS, Xenon10, CDMSII, Xenon100, LUX, Fermi GST...
Direct WIMP DM Searches

- Recoil off atomic nuclei (electrons)

Q: Why do the constraints get weaker towards lower and higher DM masses?
Other avenues for WIMP search:

- Indirect searches: self-annihilation signals
 - Related to thermal relic density
 - Complicated by astrophysical backgrounds

- Collider production: LHC
 - Search for missing energy in events
Dark Sectors and Dark Forces

For example: Arkani-Hamed, Finkbeiner, Slatyer, Weiner, 2008

- DM may reside in a separate sector with its own forces
 - Analogy with SM

- DM interactions with SM are indirect

- Simple example: a “dark” sector $U(1)_d$
 - Mediated by vector boson Z_d of mass m_{Z_d} coupling g_d

- $m_{Z_d} \lesssim 1$ GeV has been invoked in various contexts
 - DM interpretation of astrophysical data
 - Explaining $g_\mu - 2$
Invisible Z_d and Low Mass DM Production

- Possible production and detection of *DM beams* in experiments
 Batell, Pospelov, Ritz, 2009 (p beam); Izaguirre, Krnjaic, Schuster, Toro, 2013 (e beam dump)

- Interesting probe of GeV-scale DM (challenge for direct detection)

Motivated a search at Fermilab:

"Dark Matter Search in a Proton Beam Dump with MiniBooNE"

Concluding Remarks

★ **Standard Model and GR successfully describe wide range of phenomena.**
 - Higgs discovered at LHC, appears to complete SM

★ **SM conceptual difficulties: hierarchy (Higgs mass “naturalness”), . . .**
 - No firm evidence for any of the associated proposed physics
 - Perhaps still early, but new organizing principles may be needed

★ **Empirical shortcomings: neutrino masses, dark matter, baryogenesis, . . .**
 - Neutrino masses: requires physics beyond SM, but typically elusive
 - Dark matter: robust evidence for new physics, potentially accessible
 - WIMP dark matter: Motivated by “naturalness” of m_H (under strain)