Quantum Computation for Nuclear Physics

Niklas Mueller
Nuclear Theory Group
Brookhaven National Laboratory
What is quantum computation?

Richard Feynman (1981)
“Simulating Physics with Computers”

“Nature isn’t classical
... and if you want to make a simulation of Nature,
you’d better make it quantum mechanical,
and by golly it’s a wonderful problem,
because it doesn’t look so easy.”

“...What I hoped to do was to design a computer
in which I knew how every part worked with everything
specified down to the atomic level. In other words I wanted
to write down a Hamiltonian for a system that could
make a calculation.”
What is quantum computation?

- **Classical Computers** can efficiently simulate statistical processes, but not quantum mechanical ones — exponential resources!

\[\sim \exp(V) \]

- **Unlike Quantum Computers** = Universal Quantum Simulators

\[\sim V \]

Today: A (nuclear) theorists perspective
What is quantum computation?

Digital (universal) Quantum Computers

source: IBM
source: NIST
source: Google
source: Ion-Q, C. Monroe
source: Microsoft
source: NIST
What is quantum computation?

- Analog (non-universal) Quantum Simulators
- Quantum Communication and Cryptography
- Quantum Annealing

+ much more!
Current Status

Quantum Computers just learned to walk

Impressive Progress in recent years!

Noisy Intermediate-Scale Quantum (NISQ) technology
Resources

- Books, e.g. “Quantum Computation and Quantum Information”, Nielsen & Chuang
- Webpages of the big players, e.g. Department of Energy, Google, IBM, Ion-Q, Microsoft, NIST, Rigetti etc.

email me: nmueller@bnl.gov
visit: https://www.bnl.gov/physics/NTG/people/mueller.php
Outline of this lecture

1. Basics - Quantum 101
2. Quantum Computing (Nuclear) Physics
3. How to do it?
4. New Ideas
Basics - Quantum 101

• Qubit = spin 1/2

\[|\uparrow\rangle = |0\rangle = (\uparrow) \]

\[|\downarrow\rangle = |1\rangle = (\downarrow) \]
Basics - Quantum 101

• Qubit = spin 1/2
 \[|\uparrow\rangle = |0\rangle = (\begin{pmatrix} 1 \\ 0 \end{pmatrix} \), \quad |\downarrow\rangle = |1\rangle = (\begin{pmatrix} 0 \\ 1 \end{pmatrix} \) \]

• Hilbert space \(\mathcal{H} = \text{span}(|0\rangle, |1\rangle) \)

\[a |0\rangle + b |1\rangle \]
Basics - Quantum 101

- Qubit = spin 1/2

\[|\uparrow\rangle = |0\rangle = \left(\begin{array}{c} 1 \\ 0 \end{array}\right), \quad |\downarrow\rangle = |1\rangle = \left(\begin{array}{c} 0 \\ 1 \end{array}\right) \]

- Hilbert space \(\mathcal{H} = \text{span}(|0\rangle, |1\rangle) \)

- Many qubits, big Hilbert space \(\mathcal{H}' = \mathcal{H} \otimes \mathcal{H} \ldots \otimes \mathcal{H} \)

\[(a_0 |0\rangle + b_0 |1\rangle) \otimes (a_1 |0\rangle + b_1 |1\rangle) = a_0a_1 |00\rangle + a_0b_1 |01\rangle + b_0a_1 |10\rangle + b_0b_1 |11\rangle \]
Basics - Quantum 101

• Qubit = spin 1/2

\[| \uparrow \rangle = | 0 \rangle = (0) \]
\[| \downarrow \rangle = | 1 \rangle = (1) \]

• Hilbert space \(\mathcal{H} = \text{span}(|0\rangle, |1\rangle) \)

• Many qubits, big Hilbert space \(\mathcal{H}' = \mathcal{H} \otimes \mathcal{H} \ldots \otimes \mathcal{H} \)

\[
(a_0 | 0 \rangle + b_0 | 1 \rangle) \otimes (a_1 | 0 \rangle + b_1 | 1 \rangle) = a_0 a_1 | 00 \rangle + a_0 b_1 | 01 \rangle + b_0 a_1 | 10 \rangle + b_0 b_1 | 11 \rangle
\]

\[
\begin{pmatrix}
 a_0 \\
 b_0
\end{pmatrix} \otimes \begin{pmatrix}
 a_1 \\
 b_1
\end{pmatrix} =
\begin{pmatrix}
 a_0 a_1 \\
 a_0 b_1 \\
 b_0 a_1 \\
 b_1 a_1
\end{pmatrix}
\]

Size of this vector grows exponentially \(2^N \) with quantum mechanical degrees of freedom.
Basics - Quantum 101
Basics - Quantum 101

- Information can be encoded \[|001001110\rangle\]
Basics - Quantum 101

• Information can be encoded \(|001001110\rangle \)

• Power of quantum: superposition of information

\[
\frac{1}{\sqrt{2}} \left(|001001110\rangle + |110001111\rangle \right)
\]

\[
\frac{1}{\sqrt{2}} \left(|\text{cat}\rangle + |\text{dog}\rangle \right)
\]
Basics - Quantum 101

• Information can be encoded \(|001001110\rangle \)

• Power of quantum: superposition of information

\[
\frac{1}{\sqrt{2}} \left(|001001110\rangle + |110001111\rangle \right)
\]

• Information processing via quantum circuit

\[|001001110\rangle \rightarrow |111101110\rangle \]
Basics - Quantum 101

• Information can be encoded
 \[|001001110\rangle \]

• Power of quantum: **superposition of information**
 \[
 \frac{1}{\sqrt{2}} \left(|001001110\rangle + |110001111\rangle \right)
 \]

• Information processing via quantum circuit
 \[|001001110\rangle \rightarrow |111101110\rangle \]

 classically, think “matrix multiplication”
 (matrix size grows exponential)
 \[
 \begin{pmatrix}
 0 \\
 1
 \end{pmatrix}
 =
 M
 \begin{pmatrix}
 1 \\
 0
 \end{pmatrix}
 \]
 (M unitary)
Basics - Quantum 101

- Information can be encoded

\[|001001110\rangle \]

- Power of quantum: superposition of information

\[\frac{1}{\sqrt{2}} \left(|001001110\rangle + |110001111\rangle \right) \quad \frac{1}{\sqrt{2}} \left(|\text{cat}\rangle + |\text{mouse}\rangle \right) \]

- Information processing via quantum circuit

\[|001001110\rangle \rightarrow |111101110\rangle \]

Classically, think "matrix multiplication"

\[\begin{pmatrix} 0 \\ 1 \end{pmatrix} = M \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad (M \text{ unitary}) \]

- Quantum parallelism

\[x = 001001110, \quad f(x)? \]

\[\frac{1}{\sqrt{2}} \left(|001001110\rangle + |111001111\rangle \right) \rightarrow \frac{1}{\sqrt{2}} \left(|101100010\rangle + |000110001\rangle \right) \]
Basics - Quantum 101
• Information can be entangled
 \[|\psi\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle) \]

• **Entanglement** is a resource in Quantum Information Science!
Basics - Quantum 101

• Information can be entangled

\[|\psi\rangle = \frac{1}{\sqrt{2}} \left(|01\rangle + |10\rangle \right) \]

• Entanglement is a resource in Quantum Information Science!

• Quantum Mechanics: Extract Information via Measurement
Basics - Quantum 101

• Information can be entangled

\[|\psi\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle) \]

• Entanglement is a resource in Quantum Information Science!

• Quantum Mechanics: Extract Information via Measurement

• Extracting answer from Quantum Computer: subtile issue
Quantum Computation for Physics
Challenges
Quantum Computation for Physics

Challenges

- Quantum-Many Body systems

\[|2\rangle = |1\rangle \otimes |n\rangle \otimes |1\rangle \otimes |1\rangle \ldots |1\rangle \]

Size of Hilbert space S^N (Gold $N = 197$)
Quantum Computation for Physics

Challenges

• Quantum-Many Body systems

\[i \hbar \partial_t \left| \psi \right\rangle = H \left| \psi \right\rangle \]

| Hilbert space \(S^N \) (Gold \(N = 197 \))

• Many degrees of freedom, exponentially large Hilbert space

\[H = \sum_i \frac{\hat{p}_i^2}{2m} + \sum_{ij} V_{ij} + \sum_{ijk} V_{ijk} + \ldots \]

(Hamiltonian operator)
Quantum Computation for Physics

Challenges

• Quantum-Many Body systems

\[\text{size of Hilbert space } S^N (\text{Gold } N = 197) \]

• Many degrees of freedom, exponentially large Hilbert space

\[i\hbar \partial_t |\psi\rangle = H |\psi\rangle \]

\[H = \sum_i \frac{\hat{p}^2}{2m} + \sum_{ij} V_{ij} + \sum_{ijk} V_{ijk} + \ldots \]

(Hamiltonian operator)

• Assuming \(|n\rangle\) and \(|p\rangle\) each had 2 states, Schroedinger equation for Gold = matrix equation of size \(2^{197} \sim 10^{59}\)

(earth consists of \(\sim 10^{50}\) atoms, yet only 197 qubits enough to represent Hilbert space of Gold)
Quantum Computation for Physics
Challenges
Quantum Computation for Physics

Challenges

• Quantum Many-Body Theory \rightarrow Quantum Field Theory
Quantum Computation for Physics

Challenges

• Quantum Many-Body Theory \rightarrow Quantum Field Theory

• Example (Quantum) Electrodynamics

$$H = \int d^3x \left\{ \frac{E^2(x)}{2} + \frac{B(x)^2}{2} + \psi^\dagger(x)\gamma^0(i\gamma \cdot \nabla + m)\psi(x) \right\}$$
Quantum Computation for Physics

Challenges

• Quantum Many-Body Theory → Quantum Field Theory

• Example (Quantum) Electrodynamics

\[H = \int d^3x \left\{ \frac{E^2(x)}{2} + \frac{B(x)^2}{2} + \psi^\dagger(x)\gamma^0(i\gamma \cdot \nabla + m)\psi(x) \right\} \]

• Every \(x \) labels one quantum mechanical degree of freedom.

Infinitely many dof's in any volume \(V \)!
Quantum Computation for Physics

Challenges

• Quantum Many-Body Theory \rightarrow Quantum Field Theory

• Example (Quantum) Electrodynamics

$$H = \int d^3x \left\{ \frac{E^2(x)}{2} + \frac{B(x)^2}{2} + \psi^\dagger(x)\gamma^0(i\gamma \cdot \nabla + m)\psi(x) \right\}$$

• Every x labels one quantum mechanical degree of freedom.

Infinitely many dof's in any volume V!
Quantum Computation for Physics
Challenges
Quantum Computation for Physics
Challenges

- Quantum Field Theory \rightarrow Lattice Quantum Field Theory

\[\psi(n) \]

\[x = na_s \quad n = (n_x, n_y, n_z) \]
Quantum Computation for Physics
Challenges

- Quantum Field Theory → **Lattice Quantum Field Theory**

\[\psi(x) \rightarrow \psi(n) \]

\[x = na_s \quad n = (n_x, n_y, n_y) \]

- Lattice Quantum Field Theory ~ Quantum Many Body Theory
Quantum Computation for Physics
Challenges
Quantum Computation for Physics

Challenges

• Gauge Theories (e.g. QED)

\[H = \int d^3x \left\{ \frac{E^2(x)}{2} + \frac{B(x)^2}{2} + \psi^\dagger(x)\gamma^0(i\gamma \cdot \nabla + m)\psi(x) \right\} \]

• Electroweak Force
• Strong Force
• Gravity
Quantum Computation for Physics

Challenges

- **Gauge Theories (e.g. QED)**

 \[H = \int d^3x \left\{ \frac{E^2(x)}{2} + \frac{B(x)^2}{2} + \psi^\dagger(x)\gamma^0(i\gamma \cdot \nabla + m)\psi(x) \right\} \]

- **Redundancy**, not all dofs are physical!
Quantum Computation for Physics

Challenges

- **Gauge Theories** (e.g. QED)

 \[
 H = \int d^3 x \left\{ \frac{E^2(x)}{2} + \frac{B(x)^2}{2} + \psi^\dagger(x) \gamma^0 (i \gamma \cdot \nabla + m) \psi(x) \right\}
 \]

- **Redundancy**, not all dofs are physical!

- **Gauss law** (operator) defines physical sector

 \[
 e^{iG(x)} |\psi^{\text{phys}}\rangle = |\psi^{\text{phys}}\rangle
 \]

 \[
 G(x) = \nabla_x E(x) - J(x)
 \]
How to compute something?
Quantum Computation for Nuclear Physics
Lattice QCD simulations
Quantum Computation for **Nuclear Physics**

Lattice QCD simulations

- From Hamiltonian to Lagrangian

\[\mathcal{L}_{\text{QCD}} = \bar{\psi}_i (i (\gamma^\mu D_\mu)_{ij} - m \delta_{ij}) \psi_j - \frac{1}{4} G_{\mu\nu}^a G^{a\mu\nu} \]

\[(G_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a - ig f^{abc} A_\mu^b A_\nu^c) \]
Quantum Computation for **Nuclear Physics**

Lattice QCD simulations

- From Hamiltonian to Lagrangian

\[\mathcal{L}_{\text{QCD}} = \bar{\psi}_i \left(i (\gamma^\mu D_\mu)_{ij} - m \delta_{ij} \right) \psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a \]

\[(G^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu - ig f^{abc} A^b_\mu A^c_\nu) \]

- … to path integral

\[Z = \int dA \, e^{iS_{\text{QCD}}[A]} \]

(\[S_{\text{QCD}} = \int d^4x \mathcal{L}_{\text{QCD}} \rightarrow a_s^3 \sum_n \mathcal{L}_{\text{lattice}} \])

\[dA \equiv \prod_x dA(x) \rightarrow \prod_n dA(n) \]
Quantum Computation for **Nuclear Physics**

Lattice QCD simulations

- From Hamiltonian to Lagrangian

 \[\mathcal{L}_{\text{QCD}} = \bar{\psi}_i (i(\gamma^\mu D_\mu)_{ij} - m \delta_{ij}) \psi_j - \frac{1}{4} G_{\mu\nu}^a G^{\mu\nu}_a \]

 \[(G_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a - ig f^{abc} A_\mu^b A_\nu^c)\]

- ... to path integral

 \[Z = \int dA \, e^{i\mathcal{S}_{\text{QCD}}[A]} \]

- In Euclidean Spacetime: statistical mechanics problem

 \[Z_E = \int dA \, e^{-S_E[A]} \]

 Lattice Monte-Carlo simulations work in many dimensions!
Quantum Computation for **Nuclear** Physics

Lattice QCD simulations

(*) over-simplification. Please don't be mad, lattice practitioners
Quantum Computation for \textbf{Nuclear Physics}

Lattice QCD simulations

- Very expensive

(*) over-simplification. Please don't be mad, lattice practitioners
Quantum Computation for **Nuclear** Physics

Lattice QCD simulations

- Very expensive
- Do not work for various interesting problems (*)!

(*) over-simplification. Please don't be mad, lattice practitioners
Quantum Computation for **Nuclear** Physics

Lattice QCD simulations

- Very expensive
- Do not work for various interesting problems

\[\text{Real-time physics, systems out of Equilibrium}\]

Nope, euclidean space time remember?

(*) over-simplification. Please don't be mad, lattice practitioners
Quantum Computation for **Nuclear Physics**

Lattice QCD simulations

- Very expensive
- Do not work for various interesting problems

- Real-time physics, systems out of equilibrium
- Systems at high density

\[Z_E = \int dA e^{-S_E[A;\mu]} \]

(*) over-simplification. Please don’t be mad, lattice practitioners...
Quantum Computation for **Nuclear Physics**

Lattice QCD simulations

- Very expensive
- Do not work for various interesting problems

- Real-time physics, systems out of equilibrium

 Nope, euclidean space time remember?

- Systems at high density

 Nope, “sign problem”

\[Z_E = \int dA \, e^{-S_E[A;\mu]} \]

(*) over-simplification. Please don’t be mad, lattice practitioners
How to do it?

Step 1: Digitization
How to do it?

Step 1: Digitization

\[\text{OCD} \]
\[\text{Hilbert space } \mathcal{H}_{\text{OCD}} \]

"digitization"

\[\text{Controllable Hilbert space of qubits} \]
\[|010010\rangle \]

OR

\[\text{Controllable Hilbert space of some atoms etc. (quantum simulation)} \]
How to do it?

Step 1: Digitization

- Example 1D: fermions
How to do it?
Step 1: Digitization

- Example 1D: fermions

\[H = -t \sum_{n} c_{n}^{\dagger} c_{n+1} + h.c. \]

\[+ m \sum_{n} (-1)^{n} c_{n}^{\dagger} c_{n} + \text{interactions} \]
How to do it?

Step 1: Digitization

- Example 1D: fermions

\[
H = -t \sum_n c_n^{\dagger} c_{n+1} + h.c. + m \sum_n (-1)^n c_n^{\dagger} c_n + \text{interactions}
\]

- Local Hilbert space \(\mathcal{H} = \bigotimes_n \mathcal{H}_n \)

- Fermion = 2 states (occupied/unoccupied)
- qubit = 2 states (|1\rangle, |0\rangle)
How to do it?

Step 1: Digitization

- Example 1D: fermions

\[H = -t \sum_n c_n^\dagger c_{n+1} + h.c. + m \sum_n (-1)^n c_n^\dagger c_n \text{ + interactions} \]

- Local Hilbert space \(\mathcal{H} = \bigotimes_n \mathcal{H}_n \)

- Fermion = 2 states
 (occupied/unoccupied)

- Qubit = 2 states
 (\(|1\rangle, |0\rangle \))

\(\mathcal{H} \text{fermions} \leftrightarrow \mathcal{H} \text{qubits} \)
How to do it?

Step 2: Come up with an algorithm
How to do it?
Step 2: Come up with an algorithm

• Example: Real-time dynamics

How does state $|\psi\rangle$ evolve over time?
How to do it?

Step 2: Come up with an algorithm

- Example: Real-time dynamics

How does state $|\psi\rangle$ evolve over time?

$$|\psi(t)\rangle = U(t) |\psi\rangle$$
How to do it?

Step 2: Come up with an algorithm

- Example: Real-time dynamics

How does state $|\psi\rangle$ evolve over time?

$|\psi(t)\rangle = U(t) |\psi\rangle$

- Initial state
- Final state
- Time evolution operator

$U(t) = e^{-iHt} |\psi\rangle$
How to do it?
Step 2: Come up with an algorithm
How to do it?

Step 2: Come up with an algorithm

• Decompose $U(t)$ into circuit

$|y\rangle U(t) |y(t)\rangle$
How to do it?

Step 2: Come up with an algorithm

- Decompose $U(t)$ into circuit

$$ |4\rangle \quad U(t) \quad |4(t)\rangle $$

$$ |0\rangle \quad X \quad |1\rangle $$

$$(\sigma) = (|0\rangle \ 1) (1 \ 0)$$
How to do it?

Step 2: Come up with an algorithm

- Decompose $U(t)$ into circuit

- Figure out how to set up $|\psi\rangle$

- and how to extract information about $|\psi(t)\rangle$ through measurement
Operator formulation of Lattice Gauge Theory

Let’s dive a bit deeper. I will go a little faster now.
Let's dive a bit deeper. I will go a little faster now.

• **QED**$^{1+1}$: Schwinger-model

\[H = \int dx \left[\frac{E_x^2}{2} + \psi^\dagger \gamma^0 (i\gamma^1 D_x + m) \psi \right] \]
Let’s dive a bit deeper. I will go a little faster now.

- **QED\(_{1+1}\): Schwinger-model**
 \[H = \int dx \left[\frac{E_x^2}{2} + \psi^\dagger \gamma^0 (i \gamma^1 D_x + m) \psi_x \right] \]

- **Lattice theory**
 \[H = a_s \sum_n \left[\frac{E_n^2}{2} - \frac{i}{2a_s} (\psi_n^\dagger U_n \psi_{n+1} - h.c.) + m(-1)^n \psi_n^\dagger \psi_n \right] \]
Operator formulation of Lattice Gauge Theory

Let’s dive a bit deeper. I will go a little faster now.

- **QED$^{1+1}$: Schwinger-model**
 \[H = \int d^4x \left[\frac{E_x^2}{2} + \psi^\dagger \gamma^0 (i \gamma^1 D_x + m) \psi_x \right] \]

- **Lattice theory**
 \[H = a_s \sum_n \left[\frac{E_n^2}{2} - \frac{i}{2a_s} \left(\psi_n^\dagger U_n \psi_{n+1} - h.c. \right) + m(-1)^n \psi_n^\dagger \psi_n \right] \]
Operator formulation of Lattice Gauge Theory
Operator formulation of Lattice Gauge Theory

• Hilbert space, gauge sector

\[\hat{E}_n |e_n\rangle = E_n |e_n\rangle \]
\[\hat{U}_n |e_n\rangle = |e_n + 1\rangle \]
Operator formulation of Lattice Gauge Theory

- Hilbert space, gauge sector

\[\hat{E}_n |e_n\rangle = E_n |e_n\rangle \]
\[\hat{U}_n |e_n\rangle = |e_n + 1\rangle \]
Operator formulation of Lattice Gauge Theory

• Hilbert space, gauge sector

\[\hat{E}_n | e_n \rangle = E_n | e_n \rangle \]
\[\hat{U}_n | e_n \rangle = | e_n + 1 \rangle \]

• Truncation / Digitization

Fermionic Hilbert space
2 states: occupied \(| \) unoccupied \(\rangle \)
\(\Rightarrow \) map onto qubits \(| 0 \rangle \) \(| 1 \rangle \)

Gauge field Hilbert space:
\[\hat{E}_n | e_n \rangle = E_n | e_n \rangle \]
\(e_n = [-\infty, \infty] \)

Truncate and digitize:
Keep finitely many states
Cut off the tail of the spectrum.
Operator formulation of Lattice Gauge Theory

- Hilbert space, gauge sector

\[\hat{E}_n |e_n\rangle = E_n |e_n\rangle \]
\[\hat{U}_n |e_n\rangle = |e_n + 1\rangle \]

- Truncation / Digitization

- Map onto qubits
Operator formulation of Lattice Gauge Theory
Operator formulation of Lattice Gauge Theory

• A state of the full theory

\[|y\rangle = |110100001100001010111111\rangle \]

(24 qubits)
Operator formulation of Lattice Gauge Theory

• A state of the full theory

\[|\psi\rangle_n = |\psi^\dagger_n\psi_n + (-1)^n - 1\rangle_2 \]

(24 qubits)

• Most of Hilbert space is unphysical, Gauss law (*)

\[G_n = E_n - E_{n-1} - e\left[\psi_n^\dagger\psi_n + \frac{(-1)^n - 1}{2}\right] \]

(can see this because in 1+1d can integrate out Gauss law to remove gauge fields, physical Hilbert space can be represented with 6 qubits, instead of 24)
Operator formulation of Lattice Gauge Theory

• A state of the full theory

\[G_n = E_n - E_{n-1} - e \left[\psi_n^+ \psi_n + \frac{(-1)^n - 1}{2} \right] \]

(can see this because in 1+1d can integrate out Gauss law to remove gauge fields, physical Hilbert space can be represented with 6 qubits, instead of 24)

• Most of Hilbert space is unphysical, Gauss law (*)

\[|\psi(\text{t})\rangle = U(\text{t}) |\psi\rangle = e^{-iHt} |\psi\rangle \]

• Hamiltonian commutes with Gauss law

\[[H, G_n] = 0 \] If initial state is physical, it will stay physical
Operator formulation of Lattice Gauge Theory
Operator formulation of Lattice Gauge Theory

\[|\psi(t)\rangle = U(t) |\psi\rangle = e^{-iHt} |\psi\rangle \]
Operator formulation of Lattice Gauge Theory

\[|\psi(t)\rangle = U(t) |\psi\rangle = e^{-iHt} |\psi\rangle \]

- \[U(t) = \prod_{t} U(\delta t) \]

“Trotterization”
Operator formulation of Lattice Gauge Theory

- $|\psi(t)\rangle = U(t) |\psi\rangle = e^{-iHt} |\psi\rangle$

- $U(t) = \prod_t U(\delta t)$

“Trotterization”

Take a look at e.g. https://arxiv.org/pdf/2002.11146.pdf to see examples of actual circuits!
Operator formulation of Lattice Gauge Theory

New Ideas

Quantum Computation for the Electron Ion Collider

• Measured are “real-time correlation functions” \(\langle P | J_\mu(x)J_\nu(0) | P \rangle \)

• What is the structure of the proton, what is \(|P\rangle \)?
New Ideas

Quantum Computation for the Electron Ion Collider

The Department of Energy has selected Brookhaven National Laboratory as the site for its proposed Electron-Ion Collider, a flagship nuclear science facility that is estimated to cost between $1.6 billion and $2.6 billion.

- Measured are “real-time correlation functions” $\langle P | J_\mu(x)J_\nu(0) | P \rangle$
- What is the structure of the proton, what is $| P \rangle$?

Quantum computers can go where classical computing fails!
Very exciting times ahead! - (Second) Quantum Revolution!

Enjoy thinking differently about problem? Go quantum!
Your turn!

Any questions?

I will hang around on Bluejeans after this lecture and we can discuss on virtual whiteboard

(or email me: nmueller@bnl.gov)
PS: Bye, bye BNL and thanks for all the fun!
(this was my last talk as a BNL’er here)
Backup: Elementary Circuits / Gates

<table>
<thead>
<tr>
<th>Operator</th>
<th>Gate(s)</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pauli-X (X)</td>
<td>X</td>
<td>$\begin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$</td>
</tr>
<tr>
<td>Pauli-Y (Y)</td>
<td>Y</td>
<td>$\begin{bmatrix} 0 & -i \ i & 0 \end{bmatrix}$</td>
</tr>
<tr>
<td>Pauli-Z (Z)</td>
<td>Z</td>
<td>$\begin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}$</td>
</tr>
<tr>
<td>Hadamard (H)</td>
<td>H</td>
<td>$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$</td>
</tr>
<tr>
<td>Phase (S, P)</td>
<td>S, T</td>
<td>$\begin{bmatrix} 1 & 0 \ 0 & e^{i\pi/4} \end{bmatrix}$</td>
</tr>
<tr>
<td>$\pi/8$ (T)</td>
<td>T</td>
<td>$\begin{bmatrix} 1 & 0 \ 0 & e^{i\pi/8} \end{bmatrix}$</td>
</tr>
<tr>
<td>Controlled Not</td>
<td>CNOT, CX</td>
<td>$\begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$</td>
</tr>
<tr>
<td>Controlled Z (CZ)</td>
<td>Z</td>
<td>$\begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & -1 \end{bmatrix}$</td>
</tr>
<tr>
<td>SWAP</td>
<td></td>
<td>$\begin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & -1 \end{bmatrix}$</td>
</tr>
<tr>
<td>Toffoli</td>
<td></td>
<td>$\begin{bmatrix} 1 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 1 \end{bmatrix}$</td>
</tr>
</tbody>
</table>

source: wikipedia

![IBM Quantum Experience](source: IBM Q Experience)
Backup: What is a path integral?
Backup: What is a path integral?

• Path integral for single particle

classically: \(\dot{x}(t), \dot{p}(t) \)

quantum mechanically: \(|x(t)\rangle \otimes |p(t)\rangle \)

one classical path

superposition of classical paths
Backup: What is a path integral?

- Path integral for single particle

 \[
 \text{classically: } \dot{x}(t), \dot{p}(t) \\
 \text{quantum mechanically: } |x(t)\rangle = |\hat{p}(t)\rangle
 \]

- Path integral for many body theory: (Quantum) Field Theory

 \[
 \phi(x) \rightarrow \phi(x) \\
 \Phi(x) \rightarrow \Phi(x)
 \]

 \[
 \text{Heisenberg Field Operator}
 \]

 \[
 \text{with each } \phi(x) \text{ comes a local Hilbert space} \\
 \text{eigenvalue at } x
 \]

 \[
 H = \bigotimes_x H_x \\
 H_x = \text{span} \{ |x\rangle^2 \} = \text{span} \{ |\hat{p}_x\rangle^2 \}
 \]

 \[
 \text{path integral: } \langle \Phi_1 | e^{-i\hat{H}t} | \Phi_0 \rangle
 \]

 \[
 \text{classically: } \Phi_0 \rightarrow \Phi_1 \\
 \text{quantum mechanically: superposition of a "path"}
 \]
Backup: What is a path integral?

not so crucial to understand now!
Backup: What is a path integral?

• Path Integral = Representation of quantum mechanical amplitude

\[
\langle \Phi_b | e^{-iHt} \Phi_a \rangle = \langle \Phi_b | e^{-i\Delta \int d\Pi \frac{d\Phi}{dt}} \langle \Pi_0 | \Phi_{\Phi} \rangle \langle \Phi_1 e^{-i\Delta \int d\Pi \frac{d\Phi}{dt}} \Phi_0 \rangle \langle \Phi_1 \cdots \Phi_n \rangle \\
= \int_{\Pi_t} d\Pi_{\Phi} d\Phi_{\Phi} \langle \Phi_0 e^{-i\Delta \int d\Pi \frac{d\Phi}{dt}} \Phi_0 \rangle \langle \Pi_{\Phi} | \Phi_{\Phi} \rangle \langle \Phi_1 \cdots \Phi_n \rangle \\
= \int D\Phi D\Pi e^{i\int dt (\Phi \Pi - H)} e^{i\Pi_0} \\
= \int D\Phi D\Pi e^{iS} \quad \text{"weighted average over field operator eigenvalue"}
\]

not so crucial to understand now!
Backup: Whiteboard space
Backup: Whiteboard space
Backup: Whiteboard space